

Welcome to the BackwardCompatibilityML project’s documentation!

	Project Overview

	Help Topics

	Python Packages

Indices and tables

	Index

	Module Index

	Search Page

Project Overview

Updates that may improve an AI system’s accuracy can also introduce new
and unanticipated errors that damage user trust. Updates that introduce
new errors can also break trust between software components and machine
learning models, as these errors are propagated and compounded
throughout larger integrated AI systems. The Backward Compatibility ML
library is an open-source project for evaluating AI system updates in a
new way for increasing system reliability and human trust in AI
predictions for actions.

In this project, we define an update to an AI component to be compatible
when it does not disrupt an experienced user’s insights and
expectations—or mental model—of how the classifier works. An update is
considered compatible only if the updated model recommends the same
correct action as recommended by the previous version, which received
the same input. A compatible update supports the user’s mental model and
maintains trust.

Compatibility is both a usability and engineering concern. This
project’s series of loss functions provides important metrics that
extend beyond the single score of accuracy. These support ML
practitioners in navigating performance and tradeoffs in system updates.
The functions integrate easily into existing AI model-training
workflows. Simple visualizations, such as Venn diagrams, further help
practitioners compare models and explore performance and compatibility
tradeoffs for informed choices.

Building trust in human-AI teams

After repeated experience with an AI system, users develop insights and
expectations, a mental model, of the system’s competence. The success of
human-AI partnerships is dependent on people knowing whether to trust
the AI or override it. This is critically important as AI systems are
used to augment human decision making in high-stakes domains such as,
for example, healthcare, criminal justice, or transportation.

A problem arises when developers regularly update AI systems with
improved training data or algorithms: Updates that may improve an AI’s
predictive performance can also introduce new and unexpected errors that
breach the end-users’ trust in the AI.

For example, a doctor uses a classifier to predict whether an elderly
patient will be readmitted to the hospital shortly after being
discharged. Based on the AI’s prediction and her own experience, she
must decide if the patient should be placed in an outpatient program to
avoid readmission. The doctor has interacted with the model quite a few
times and knows that it is 80% accurate. Having learned the error
boundary, she has concluded that the model is trustworthy for elderly
patients. However, she is unaware that an update, which has made the
model 90% accurate, now introduces errors for elderly patients and
should not be trusted for this population. This puts the doctor—who is
relying on an outdated mental model—at risk of making a wrong decision
for her patient and will undermine her trust in the AI’s future
recommendations.

[image: image1]

Updates that may improve an AI system’s predictive performance can also
introduce new and unexpected errors that breach end-users’ trust and
damage the effectiveness of human-AI teams. Here, a doctor is not yet
aware that an update, which increased a model’s accuracy, now introduces
errors for elderly patients and should not be trusted when making
decisions for this population.

Identifying unreliability problems in an update

It is helpful to understand that compatibility is not inbuilt, and that
measuring backward compatibility can identify unreliability issues
during an update. As shown in the table below, experimenting with three
different datasets in high-stakes decision making (predicting
recidivism, credit risk, and mortality) by updating with a larger
training set only, there are cases where compatibility is as low as
40%. This means the model is now making a mistake in 60% of the cases it
was getting right before the update.

[image: image2]

Maintaining component-to-component trust

An incompatible update can also break trust with other software
components and machine learning models that are not able to handle new
errors. They instead propagate and compound these new errors throughout
complex systems. Measuring backward compatibility can identify
unreliability issues during an update and help ML practitioners control
for backward compatibility to avoid downstream degradation.

For example, a financial services team uses an off-the-shelf OCR model
to detect receipt fraud in expense reports. They have developed a
heuristic blacklist component of spoofed company names (e.g., “Nlke” vs.
“Nike” or “G00gle” vs. “Google”), which works well with the OCR model.
Developers, with the aim of improving model performance for a wider
variety of fonts, update the model with a noisy dataset of character
images scraped from the internet, which people have labelled through
CAPTCHA tasks. Common human annotation mistakes of confusing “l” for “i”
or “0” for “o” now unexpectedly reduce the classifier’s ability to
discriminate between spoofed and legitimate business names, which can
lead to costly system failures.

As shown in the image below, developers can use two separate measures of
backward compatibility for evaluating and avoiding downstream failures:
Backward Trust Compatibility (BTC), which describes the percentage of
trust preserved after an update, and Backward Error Compatibility (BEC),
which captures the probability that a mistake made by the newly trained
model is not new. The 89% BTC and 71% BEC scores show a decrease in
backward compatibility compared with the baseline.

[image: image3]

In this example, above, while the overall accuracy of word recognition might
improve after the model update, the performance of the system on
specific words in the blacklist heuristics may degrade significantly.
Additionally, with backward compatibility analysis, seeing the
distribution of incompatibility can be a useful guide for pinpointing
where there are problems with the data.

Below illustrates how a holistic view of decreases in performance enable
users to monitor incompatibility beyond examples that are explicitly
impacted by noise. Here, the uppercase “Z” is often among incompatible
points, even though it is not directly influenced by noise.

[image: image4]

Components

The Backward Compatibility ML library has two components:

	A series of loss functions in which users can vary the weight
assigned to the dissonance factor and explore performance/capability
tradeoffs during machine learning optimization.

	Visualization widgets that help users examine metrics and error
data in detail. They provide a view of error intersections between
models and incompatibility distribution across classes.

References

Updates in Human-AI Teams: Understanding and Addressing the
Performance/Compatibility Tradeoff. Gagan Bansal, Besmira Nushi, Ece
Kamar, Daniel S Weld, Walter S Lasecki, Eric Horvitz; AAAI 2019. pdf [https://www.microsoft.com/en-us/research/uploads/prod/2019/01/Backward_Compatibility_in_AI.pdf]

An Empirical Analysis of Backward Compatibility in Machine Learning
Systems. Megha Srivastava, Besmira Nushi, Ece Kamar, Shital Shah, Eric
Horvitz; KDD
2020. pdf [https://www.microsoft.com/en-us/research/uploads/prod/2020/06/Backward_Compatibility_ML_KDD.pdf]

Towards Accountable AI: Hybrid Human-Machine Analyses for
Characterizing System Failure. Besmira Nushi, Ece Kamar, Eric Horvitz;
HCOMP 2018. pdf [https://www.microsoft.com/en-us/research/uploads/prod/2018/07/accountable_AI_hcomp_2018.pdf]

Help Topics

	Getting Started

	Integrating the Backward Compatibility ML Loss Functions

	Using the Backward Compatibility ML Compatibility Analysis Widget

	Using the Model Comparison Widget

Getting Started

Backward Compatibility ML library requirements

The requirements for installing and running the Backward Compatibility ML library are:

	Windows 10 / Linux OS (tested on Ubuntu 18.04 LTS)

	Python 3.6

Installing the Backward Compatibility ML library

Follow these steps to install the Backward Compatibility ML library on your computer.
You may want to install Anaconda [https://www.anaconda.com/distribution/]
(or other virtual environment) on your system for convenience, then follow these steps:

1. (optional) Prepare a conda virtual environment:

conda create -n bcml python=3.6
conda activate bcml

2. (optional) Ensure you have the latest pip

python -m pip install --upgrade pip

3. Install the Backward Compatibility ML library:

	On Linux:

	pip install backwardcompatibilityml

	On Windows:

	pip install backwardcompatibilityml -f https://download.pytorch.org/whl/torch_stable.html

4. Import the `backwardcompatibilityml` package in your code. For example:

import backwardcompatibilityml.loss as bcloss
import backwardcompatibilityml.scores as scores

Running the Backward Compatibility ML library examples

Note

The Backward Compatibility ML library examples were developed as Jupyter Notebooks
and require the Jupyter Software [https://jupyter.org/install] to be installed.
The steps below assume that you have git [https://git-scm.com/downloads] installed
on your system.

The Backward Compatibility ML library includes several examples so you can quickly
get an idea of its benefits and learn how to integrate it into your existing ML training workflow.

To download and run the examples, follow these steps:

1. Clone the BackwardCompatibilityML repository:

git clone https://github.com/microsoft/BackwardCompatibilityML.git

2. Install the requirements for the examples:

cd BackwardCompatibilityML

	On Linux:

	pip install -r example-requirements.txt

	On Windows:

	pip install -r example-requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

3. Start your Jupyter Notebooks server and load an example notebook under the `examples` folder:

cd examples
jupyter notebook

Backward Compatibility ML library examples included

	Notebook name

	Framework

	Dataset

	Network

	Optimizer

	Backward Compatibility Dissonance Function

	Backward Compatibility Loss Function

	Uses CompatibilityAnalysis widget

	Uses CompatibilityModel class

	Uses ModelComparison widget

	bcbinary_cross_entropy

	PyTorch

	UCI Adult Data Set

	LogisticRegression

	SGD

	New Error

	Binary Cross-entropy Loss

	N

	N/A

	N

	bckldivergence

	PyTorch

	MNIST

	Custom

	SGD

	New Error

	Kullback–Leibler Divergence Loss

	N

	N/A

	N

	bcnllloss

	PyTorch

	MNIST

	Custom

	SGD

	New Error

	Negative Log Likelihood Loss

	N

	N/A

	N

	compatibility-analysis

	PyTorch

	MNIST

	Custom

	SGD

	New Error & Strict Imitation

	Cross-entropy Loss

	Y

	N/A

	N

	compatibility-analysis-adult

	PyTorch

	UCI Adult Data Set

	LogisticRegression

	SGD

	New Error & Strict Imitation

	Cross-entropy Loss

	Y

	N/A

	N

	compatibility-analysis-adult-kldiv

	PyTorch

	UCI Adult Data Set

	LogisticRegression

	SGD

	New Error & Strict Imitation

	Kullback–Leibler Divergence Loss

	Y

	N/A

	N

	compatibility-analysis-cifar10-resnet18

	PyTorch

	CIFAR10

	Custom & RESNet 18

	SGD

	New Error & Strict Imitation

	Cross-entropy Loss

	Y

	N/A

	N

	compatibility-analysis-cifar10-resnet18-pretrained

	PyTorch

	CIFAR10

	Custom & RESNet 18 (pretrained)

	SGD

	New Error & Strict Imitation

	Cross-entropy Loss

	Y

	N/A

	N

	compatibility-analysis-from-saved-data

	PyTorch

	MNIST

	Custom

	SGD

	New Error & Strict Imitation

	Cross-entropy Loss

	Y

	N/A

	N

	compatibility-analysis-kldiv

	PyTorch

	MNIST

	Custom

	SGD

	New Error & Strict Imitation

	Kullback–Leibler Divergence Loss

	Y

	N/A

	N

	model-comparison-MNIST

	PyTorch

	MNIST

	Custom

	SGD

	N/A

	N/A

	N/A

	N/A

	Y

	si_cross_entropy_loss

	PyTorch

	MNIST

	Custom

	SGD

	Strict Imitation

	Cross-entropy Loss

	N

	N/A

	N

	si_nllloss

	PyTorch

	MNIST

	Custom

	SGD

	Strict Imitation

	Negative Log Likelihood Loss

	N

	N/A

	N

	tensorflow-MNIST-generalized

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-MNIST

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Cross-entropy Loss

	N/A

	Y

	N/A

	tensorflow-new-error-binary-cross-entropy-loss

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Binary Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-new-error-cross-entropy-loss

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-new-error-kldiv-loss

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-new-error-nll-loss

	TensorFlow

	MNIST

	Custom

	Adam

	New Error

	Negative Log Likelihood Loss

	N/A

	N

	N/A

	tensorflow-strict-imitation-binary-cross-entropy-loss

	TensorFlow

	MNIST

	Custom

	Adam

	Strict Imitation

	Binary Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-strict-imitation-cross-entropy-loss

	TensorFlow

	MNIST

	Custom

	Adam

	Strict Imitation

	Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-strict-imitation-kldiv-loss

	TensorFlow

	MNIST

	Custom

	Adam

	Strict Imitation

	Cross-entropy Loss

	N/A

	N

	N/A

	tensorflow-strict-imitation-nll-loss

	TensorFlow

	MNIST

	Custom

	Adam

	Strict Imitation

	Negative Log Likelihood Loss

	N/A

	N

	N/A

Next steps

Do you want to learn how to integrate the Backward Compatibility ML Loss Function in your new or existing ML training workflows? Follow this tutorial.

If you want to ask us a question, suggest a feature or report a bug, please contact the team by filing an issue in our repository on GitHub. [https://github.com/microsoft/BackwardCompatibilityML/issues] We look forward to hearing from you!

Integrating the Backward Compatibility ML Loss Functions

We have implemented the following compatibility loss functions:

	BCNLLLoss - Backward Compatibility Negative Log Likelihood Loss

	BCCrossEntropyLoss- Backward Compatibility Cross-entropy Loss

	BCBinaryCrossEntropyLoss - Backward Compatibility Binary Cross-entropy Loss

	BCKLDivergenceLoss - Backward Compatibility Kullback–Leibler Divergence Loss

And the following strict imitation loss functions:

	StrictImitationNLLLoss - Strict Imitation Negative Log Likelihood Loss

	StrictImitationCrossEntropyLoss - Strict Imitation Cross-entropy Loss

	StrictImitationBinaryCrossEntropyLoss - Strict Imitation Binary Cross-entropy Loss

	StrictImitationKLDivergenceLoss - Strict Imitation Kullback–Leibler Divergence Loss

Both these sets of loss functions are implemented along the lines of

compatibility_loss(x, y) = underlying_loss(h2(x), y) + lambda_c * dissonance(h1, h2, x, y)

Where the dissonance is the backward compatibility dissonance for the compatibility
loss functions, and the strict imitation dissonance in the case of the strict imitation
loss functions.

Example Usage

Let us assume that we have a pre-trained model h1 that we want to use
as our reference model while training / updating a new model h2.

Let us load our pre-trained model:

h1 = MyModel()
h1.load_state_dict(torch.load("path/to/state/dict.state"))

Then let us instantiate h2 and train / update it, using h1 as a
reference:

from backwardcompatibilityml.loss import BCCrossEntropyLoss

h2 = MyModel()
lambda_c = 0.7
bc_loss = BCCrossEntropyLoss(h1, h2, lambda_c)

for data, target in updated_training_set:
 h2.zero_grad()
 loss = bc_loss(data, target)
 loss.backward()

Calling loss.backward() at each step of the training iteration, updates
the weights of the model h2.

You may also decide to use an optimizer as follows:

import torch.optim as optim
from backwardcompatibilityml.loss import BCCrossEntropyLoss

h2 = MyModel()
lambda_c = 0.7
learning_rate = 0.01
momentum = 0.5
bc_loss = BCCrossEntropyLoss(h1, h2, lambda_c)
optimizer = optim.SGD(h2.parameters(), lr=learning_rate, momentum=momentum)

for data, target in updated_training_set:
 loss = bc_loss(data, target)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

The usage for BCNLLLoss, StrictImitationCrossEntropyLoss and StrictImitationNLLLoss
is exactly the same as above.

Assumptions on the implementation of h1 and h2

It is important*to emphasize that since the compatibility and strict imitation loss functions
need to use h1 and h2 to calculate the loss, some assumptions had to be made on the
output returned by h1 and h2.

Specifically, we require that both the models h1 and h2 return an ordered triple
containing:

	The raw logits output from the final layer.

	The function softmax applied to the raw logits.

	The function log_softmax applied to the raw logits.

Here is an example Logistic Regression model satisfying these requirements:

import torch.nn as nn
import torch.nn.functional as F

class LogisticRegression(nn.Module):

 def __init__(self, input_dim, output_dim):
 super(LogisticRegression, self).__init__()
 self.linear = nn.Linear(input_dim, output_dim)

 def forward(self, x):
 out = self.linear(x)
 out_softmax = F.softmax(out, dim=-1)
 out_log_softmax = F.log_softmax(out, dim=-1)

 return out, out_softmax, out_log_softmax

Here is an example Convolutional Network model satisfying these requirements:

import torch.nn as nn
import torch.nn.functional as F

class ConvolutionalNetwork(nn.Module):
 def __init__(self):
 super(ConvolutionalNetwork, self).__init__()
 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 self.conv2_drop = nn.Dropout2d()
 self.fc1 = nn.Linear(320, 50)
 self.fc2 = nn.Linear(50, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), 2))
 x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
 x = x.view(-1, 320)
 x = F.relu(self.fc1(x))
 x = F.dropout(x, training=self.training)
 x = self.fc2(x)
 return x, F.softmax(x, dim=1), F.log_softmax(x, dim=1)

Using the Backward Compatibility ML Compatibility Analysis Widget

Note

At the moment, the Compatibility Analysis Widget only works with
PyTorch models. If you are interested in using the widget with TensorFlow,
please let us know by submitting a Feature request. [https://github.com/microsoft/BackwardCompatibilityML/issues/new?template=feature_request.md&title=%5BFEATURE%5D]

The compatibility analysis widget can be used to quickly determine which loss
function and value of λc performs best for your models. The widget will
train a new model h2 using backward compatibility loss functions of your choice.
Refer to Integrating the Backward Compatibility ML Loss Functions to see a list of the
loss functions that are available. The widget will train h2 several times with
different values of λc and show a visualization of the
results. We will discuss how to use the CompatibilityAnalysis API and how to interpret
the resulting visualizations.

How to Use the CompatibilityAnalysis API

The CompatibilityAnalysis API has a large number of parameters. To view the Python documentation
for the API, execute ?CompatibilityAnalysis within a Jupyter notebook. The documentation for all of the parameters will be displayed at the bottom of the window.

In this article, we will reference the compatibility-analysis-cifar10-resnet18 example notebook.
You can find this notebook at ./examples/compatibility-analysis-cifar10-resnet18 from the
BackwardCompatibilityML project root. This notebook uses the widget to compare the performance of
resnet18 with the following six-layer network using the cifar10 dataset:

class Net(nn.Module):

 def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1)
 self.fc2 = nn.Linear(18*32*32, 192)
 self.fc3 = nn.Linear(192, 192)
 self.fc4 = nn.Linear(192, 192)
 self.fc5 = nn.Linear(192, 192)
 self.fc6 = nn.Linear(192, 10)

 def forward(self, x):
 x = F.relu(self.conv1(x))
 x = x.view(-1, 18*32*32)
 x = F.relu(self.fc2(x))
 x = F.relu(self.fc3(x))
 x = F.relu(self.fc4(x))
 x = F.relu(self.fc5(x))
 x = self.fc6(x)

 return x, F.softmax(x, dim=1), F.log_softmax(x, dim=1)

The last cell in the notebook instantiates the widget:

analysis = CompatibilityAnalysis("sweeps-cifar10", 5, h1, h2, train_loader, test_loader,
 batch_size_train, batch_size_test,
 OptimizerClass=optim.SGD,
 optimizer_kwargs={"lr": learning_rate, "momentum": momentum},
 NewErrorLossClass=bcloss.BCCrossEntropyLoss,
 StrictImitationLossClass=bcloss.StrictImitationCrossEntropyLoss,
 lambda_c_stepsize=0.50,
 get_instance_image_by_id=get_instance_image,
 device="cuda")

Here, h1 refers to the resnet18 model, and h2 refers to the simple Net model.
train_loader and test_loader are the train and test datasets. The BCCrossEntropyLoss
and StrictImitationCrossEntropyLoss loss functions will be used to train h2.
lambda_c_stepsize has been set to a relatively large value of 0.50 to reduce runtime.
The number of samples of λc in the sweep is inversely proportional to lambda_c_stepsize.
In other words, if lambda_c_stepsize is small, then the sweep will compute many samples,
many points will be shown in the scatter plot, and the sweep will take longer to finish. Finally,
the device has been set to cuda. It should be set to cpu if you do not have a GPU in your machine.

Interpreting the Visualizations

The first time the CompatibilityAnalysis widget is run, only a Start Sweep button will be shown.
Click on it to start the sweep. The sweep will likely take several minutes to run.
When it is complete, the widget will plot the results. The following screenshot shows
the results from the compatibility-analysis-cifar10-resnet18 example notebook.

[image: ../../_images/compatibility_analysis_widget.png]
The drop-down menus contain options to filter the data shown in the scatter plots. The Dataset
drop-down has options for selecting the training or testing set data. The Dissonance drop-down
has options for selecting the New Error or Strict Imitation loss functions.

The two scatter plots graph the backward compatibility of the model against the model accuracy for a particular
value of λc. Hovering over a point shows the value of λc for that point. Clicking on a point
loads detailed results and error analysis for that particular value of λc.

The numeric values for BTC, BEC, model accuracy, and λc are shown in a table in the middle of the widget.
Below that table, there is a Venn diagram and a histogram that plot the errors made by each model.
The Venn diagram shows the intersection of errors made by the previous model with errors made by the new model.
The red region represents errors made only by the new model, the yellow region represents errors made by both models,
and the green region represents errors made only by the old model. The histogram breaks down incompatible data points by class.
A point is considered incompatible if it was classified correctly by the old model but incorrectly by the new model.
Note that the histogram is paginated with five classes shown per page.

The bars on the histogram and regions of the Venn diagram are clickable. When clicked,
the data instances that have been misclassified will be displayed in a table at the bottom of the widget.
This table is useful for exploring the dataset to determine why the models are misclassifying the data.

In the example below, class 0 has been selected in the histogram. The mislabeled pictures are shown in the
table underneath. Notice that h1’s predictions match the ground truth for each data point while h2’s predictions
do not. This is what we would expect to see based on our definition of incompatible points.

[image: ../../_images/error_instances_table.png]
The CompatibilityAnalysis API contains two optional parameters, get_instance_metadata
and get_instance_image_by_id, which make the data shown in the table more descriptive.
Pictures will be shown in the table if get_instance_image_by_id is provided, and a
descriptive label will be shown if get_instance_metadata is provided.
Both of these parameters are functions.

Here is an example implementation of get_instance_image_by_id. It returns an image in PNG format
for the data instance specified by instance_id.

def get_instance_image(instance_id):
 img_bytes = io.BytesIO()
 data = np.uint8(np.transpose((unnormalize(dataset[instance_id][1])), (1, 2, 0)).numpy() * 255)
 img = Image.fromarray(data, 'RGB')
 img.save(img_bytes, format="PNG")
 img_bytes.seek(0)
 return send_file(img_bytes, mimetype='image/png')

Here is an example implementation of get_instance_metadata. It returns a string for the data instance
specified by instance_id.

def get_instance_metadata(instance_id):
 label = data_loader[instance_id][2].item()
 return str(label)

Using the Model Comparison Widget

The model comparison widget uses the notion of compatibility to compare two
models h1 and h2. The widget itself uses two graphs to display this
comparison:

1. A Venn diagram that displays the overlaps between the set of misclassified
instances produced by h1 and the set of misclassified instances produced
by model h2.

2. A histogram that shows the number of incompatible instances, i.e. instances
which have been misclassified by h2 but not by h1, on a per-class
basis.

A tabular view is also provided, that allows the user to explore the instances
which have been misclassified. This tabular view is connected to both the
Venn diagram and the histogram, and gets filtered based on how the user
interacts with both those graphs.

The following is an image of the model comparison widget.

[image: ../../_images/model_comparison_widget.png]

How to Use the ModelComparison API

The model comparison widget accepts two models which are classifiers, h1 and h2.
It also accepts a batched dataset consisting of a list of triples of the form:

[batch_of_instance_ids, batch_of_instance_data, batch_of_ground_truth_labels]

An optional parameter is a function passed in as a keyword parameter called
get_instance_image_by_id which is a function that returns a PNG image
for a given instance id. This is what allows the error instances table to
display an image representation of each instance. If this parameter is not
specified, then the image representation of the instance defaults to a blank
PNG image.

An additional optional parameter is device, which tells it whether it needs to run
the comparison on the GPU. This depends on whether your models are on the GPU or not.

With all the parameters as specified above, the widget may be invoked:

model_comparison = ModelComparison(h1, h2, train_loader,
 get_instance_image_by_id=get_instance_image,
 device="cuda")

Within a Jupyter Notebook the above will render the component.

An example notebook which walks you through a working example may be found at
./examples/model-comparison-MNIST from the BackwardCompatibilityML project root.

Integrating the Model Comparison Widget

The data used to summarize the comparison of the models h1 and h2
and display the results int he widget, are all pre-computed at the time of
instantiation of the widget. This data is then passed directly to the
widget UI at the time of rendering. And as such, any interactions tht the
user performs with the widget, simply re-render the widget using this
pre-computed data.

Integration should just involve pre-computing the comparison data and making
sure that it is passed to the javascript component at render time.

The relevant places to see where this happens are within the following files.

	backwardcompatibilityml/widgets/model_comparison/resources/widget.html

	backwardcompatibilityml/widgets/model_comparison/model_comparison.py

The Flask service is only used to field the requests from the widget UI that
are needed to render the image representation of the widgets. This is currently
done within the file backwardcompatibilityml/comparison_management.py.

It should be possible to do away with the Flask service in theory, if we simply
pre-render each image as a base64 encoded data URL and include that in the UI.
However this risks making the UI a bit slow to load.

backwardcompatibilityml

	backwardcompatibilityml package
	Subpackages
	backwardcompatibilityml.helpers package
	Submodules

	backwardcompatibilityml.helpers.comparison module

	backwardcompatibilityml.helpers.http module

	backwardcompatibilityml.helpers.models module

	backwardcompatibilityml.helpers.training module

	backwardcompatibilityml.helpers.utils module

	Module contents

	backwardcompatibilityml.loss package
	Submodules

	backwardcompatibilityml.loss.new_error module

	backwardcompatibilityml.loss.strict_imitation module

	Module contents

	backwardcompatibilityml.tensorflow package
	Subpackages

	Submodules

	backwardcompatibilityml.tensorflow.helpers module

	backwardcompatibilityml.tensorflow.models module

	Module contents

	backwardcompatibilityml.widgets package
	Subpackages

	Module contents

	Submodules

	backwardcompatibilityml.comparison_management module

	backwardcompatibilityml.metrics module

	backwardcompatibilityml.scores module

	backwardcompatibilityml.sweep_management module

	Module contents

backwardcompatibilityml package

Subpackages

	backwardcompatibilityml.helpers package
	Submodules

	backwardcompatibilityml.helpers.comparison module

	backwardcompatibilityml.helpers.http module

	backwardcompatibilityml.helpers.models module

	backwardcompatibilityml.helpers.training module

	backwardcompatibilityml.helpers.utils module

	Module contents

	backwardcompatibilityml.loss package
	Submodules

	backwardcompatibilityml.loss.new_error module

	backwardcompatibilityml.loss.strict_imitation module

	Module contents

	backwardcompatibilityml.tensorflow package
	Subpackages
	backwardcompatibilityml.tensorflow.loss package
	Submodules

	backwardcompatibilityml.tensorflow.loss.new_error module

	backwardcompatibilityml.tensorflow.loss.strict_imitation module

	Module contents

	Submodules

	backwardcompatibilityml.tensorflow.helpers module

	backwardcompatibilityml.tensorflow.models module

	Module contents

	backwardcompatibilityml.widgets package
	Subpackages
	backwardcompatibilityml.widgets.compatibility_analysis package
	Subpackages

	Submodules

	backwardcompatibilityml.widgets.compatibility_analysis.compatibility_analysis module

	Module contents

	backwardcompatibilityml.widgets.model_comparison package
	Subpackages

	Submodules

	backwardcompatibilityml.widgets.model_comparison.model_comparison module

	Module contents

	Module contents

Submodules

backwardcompatibilityml.comparison_management module

	
class backwardcompatibilityml.comparison_management.ComparisonManager(dataset, get_instance_image_by_id=None)

	Bases: object

The ComparisonManager class is used to field any REST requests by the ModelComparison
widget UI components from within the Jupyter notebook.

	Parameters

	
	training_set – The list of training samples as (batch_ids, input, target).

	dataset – The list of dataset samples as (batch_ids, input, target).

	get_instance_image_by_id –
	A function that returns an image representation of the data corresponding to the instance id, in PNG format. It should be a function of the form:

	
	get_instance_image_by_id(instance_id)

	instance_id: An integer instance id

And should return a PNG image.

	
get_instance_image(instance_id)

	

backwardcompatibilityml.metrics module

	
backwardcompatibilityml.metrics.model_accuracy(model, dataset, device='cpu')

	

backwardcompatibilityml.scores module

	
backwardcompatibilityml.scores.error_compatibility_score(h1_output_labels, h2_output_labels, expected_labels)

	The fraction of instances labeled incorrectly by h1 and h2
out of the total number of instances labeled incorrectly by h1.

	Parameters

	
	h1_output_labels – A list of the labels outputted by the model h1.

	h2_output_labels – A list of the labels output by the model h2.

	expected_labels – A list of the corresponding ground truth target labels.

	Returns

	If h1 has any errors, then we return the error compatibility score of h2 with respect to h1.
If h1 has no errors then we return 0.

	
backwardcompatibilityml.scores.trust_compatibility_score(h1_output_labels, h2_output_labels, expected_labels)

	The fraction of instances labeled correctly by both h1 and h2
out of the total number of instances labeled correctly by h1.

	Parameters

	
	h1_output_labels – A list of the labels outputted by the model h1.

	h2_output_labels – A list of the labels output by the model h2.

	expected_labels – A list of the corresponding ground truth target labels.

	Returns

	If h1 has any errors, then we return the trust compatibility score of h2 with respect to h1.
If h1 has no errors then we return 0.

backwardcompatibilityml.sweep_management module

	
class backwardcompatibilityml.sweep_management.SweepManager(folder_name, number_of_epochs, h1, h2, training_set, test_set, batch_size_train, batch_size_test, OptimizerClass, optimizer_kwargs, NewErrorLossClass, StrictImitationLossClass, lambda_c_stepsize=0.25, new_error_loss_kwargs=None, strict_imitation_loss_kwargs=None, performance_metric=<function model_accuracy>, get_instance_image_by_id=None, get_instance_metadata=None, device='cpu', use_ml_flow=False, ml_flow_run_name='compatibility_sweep')

	Bases: object

The SweepManager class is used to manage an experiment that performs
training / updating a model h2, with respect to a reference model h1
in a way that preserves compatibility between the models. The experiment
performs a sweep of the parameter space of the regularization parameter
lambda_c, by performing compatibility trainings for small increments
in the value of lambda_c for some settable step size.

The sweep manager can run the sweep experiment either synchronously,
or within a separate thread. In the latter case, it provides some
helper functions that allow you to check on the percentage of the
sweep that is complete.

	Parameters

	
	folder_name – A string value representing the full path of the
folder wehre the result of the compatibility sweep is to be stored.

	number_of_epochs – The number of training epochs to use on each sweep.

	h1 – The reference model being used.

	h2 – The new model being traind / updated.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	OptimizerClass – The class to instantiate an optimizer from for training.

	optimizer_kwargs – A dictionary of the keyword arguments to be used to
instantiate the optimizer.

	NewErrorLossClass – The class of the New Error style loss function to
be instantiated and used to perform compatibility constrained
training of our model h2.

	StrictImitationLossClass – The class of the Strict Imitation style loss
function to be instantiated and used to perform compatibility
constrained training of our model h2.

	performance_metric – Optional performance metric to be used when evaluating the model.
If not specified then accuracy is used.

	lambda_c_stepsize – The increments of lambda_c to use as we sweep the parameter
space between 0.0 and 1.0.

	get_instance_image_by_id –
	A function that returns an image representation of the data corresponding to the instance id, in PNG format. It should be a function of the form:

	
	get_instance_image_by_id(instance_id)

	instance_id: An integer instance id

And should return a PNG image.

	get_instance_metadata –
	A function that returns a text string representation of some metadata corresponding to the instance id. It should be a function of the form:

	
	get_instance_metadata(instance_id)

	instance_id: An integer instance id

And should return a string.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	use_ml_flow – A boolean flag controlling whether or not to log the sweep
with MLFlow. If true, an MLFlow run will be created with the name
specified by ml_flow_run_name.

	ml_flow_run_name – A string that configures the name of the MLFlow run.

	
get_evaluation(evaluation_id)

	

	
get_instance_image(instance_id)

	

	
get_sweep_status()

	

	
get_sweep_summary()

	

	
is_running()

	

	
start_sweep()

	

	
start_sweep_synchronous()

	

Module contents

backwardcompatibilityml.helpers package

Submodules

backwardcompatibilityml.helpers.comparison module

	
backwardcompatibilityml.helpers.comparison.compare_models(h1, h2, dataset, performance_metric, get_instance_metadata=None, device='cpu')

	

backwardcompatibilityml.helpers.http module

	
backwardcompatibilityml.helpers.http.no_cache(f)

	

backwardcompatibilityml.helpers.models module

	
class backwardcompatibilityml.helpers.models.LogisticRegression(input_dim, output_dim)

	Bases: torch.nn.modules.module.Module

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.helpers.models.MLPClassifier(input_size, num_classes, hidden_sizes=[50, 10])

	Bases: torch.nn.modules.module.Module

	
forward(data, sample_weight=None)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

backwardcompatibilityml.helpers.training module

	
backwardcompatibilityml.helpers.training.compatibility_scores(h1, h2, dataset, device='cpu')

	
	Parameters

	
	h1 – Reference Pytorch model.

	h2 – The model being compared to h1.

	dataset – Data in the form of a list of batches of input/target pairs.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A pair consisting of btc_dataset - the average trust compatibility
score over all batches, and bec_dataset - the average error
compatibility score over all batches.

	
backwardcompatibilityml.helpers.training.compatibility_sweep(sweeps_folder_path, number_of_epochs, h1, h2, training_set, test_set, batch_size_train, batch_size_test, OptimizerClass, optimizer_kwargs, NewErrorLossClass, StrictImitationLossClass, performance_metric=<function model_accuracy>, lambda_c_stepsize=0.25, percent_complete_queue=None, new_error_loss_kwargs=None, strict_imitation_loss_kwargs=None, get_instance_metadata=None, device='cpu', use_ml_flow=False, ml_flow_run_name='compatibility_sweep')

	This function trains a new model using the backward compatibility loss function
BCNLLLoss with respect to an existing model. It does this for each value of
lambda_c betweek 0 and 1 at the specified step sizes. It saves the newly
trained models in the specified folder.

	Parameters

	
	sweeps_folder_path – A string value representing the full path of the
folder wehre the result of the compatibility sweep is to be stored.

	number_of_epochs – The number of training epochs to use on each sweep.

	h1 – The reference model being used.

	h2 – The new model being traind / updated.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	OptimizerClass – The class to instantiate an optimizer from for training.

	optimizer_kwargs – A dictionary of the keyword arguments to be used to
instantiate the optimizer.

	NewErrorLossClass – The class of the New Error style loss function to
be instantiated and used to perform compatibility constrained
training of our model h2.

	StrictImitationLossClass – The class of the Strict Imitation style loss
function to be instantiated and used to perform compatibility
constrained training of our model h2.

	performance_metric –
	A function to evaluate model performance. The function is expected to have the following signature:

	
	metric(model, dataset, device)

	model: The model being evaluated
dataset: The dataset as a list of (batch_ids, input, target)
device: The device Pytorch is using for training - “cpu” or “cuda”

If unspecified, then accuracy is used.

	lambda_c_stepsize – The increments of lambda_c to use as we sweep the parameter
space between 0.0 and 1.0.

	percent_complete_queue – Optional thread safe queue to use for logging the
status of the sweep in terms of the percentage complete.

	get_instance_metadata –
	A function that returns a text string representation of some metadata corresponding to the instance id. It should be a function of the form:

	
	get_instance_metadata(instance_id)

	instance_id: An integer instance id

And should return a string.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	use_ml_flow – A boolean flag controlling whether or not to log the sweep
with MLFlow. If true, an MLFlow run will be created with the name
specified by ml_flow_run_name.

	ml_flow_run_name – A string that configures the name of the MLFlow run.

	
backwardcompatibilityml.helpers.training.evaluate_model_performance_and_compatibility(h1, h2, training_set, test_set, performance_metric, device='cpu')

	Calculate the error overlap of h1 and h2 on a batched dataset.
Calculate the h2 model error fraction by class on a batched dataset.

	Parameters

	
	h1 – The reference model being used.

	h2 – The model being traind / updated.

	performance_metric – Performance metric to be used when evaluating the model.

	training_set – The list of batched training samples as (batch_ids, input, target).

	test_set – The list of batched testing samples as (batch_ids, input, target).

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A dictionary containing the results of the model performance and evaluation
performed on the training and the testing sets separately.

	
backwardcompatibilityml.helpers.training.evaluate_model_performance_and_compatibility_on_dataset(h1, h2, dataset, performance_metric, get_instance_metadata=None, device='cpu')

	
	Parameters

	
	h1 – The reference model being used.

	h2 – The model being traind / updated.

	performance_metric – Performance metric to be used when evaluating the model.

	get_instance_metadata –
	A function that returns a text string representation of some metadata corresponding to the instance id. It should be a function of the form:

	
	get_instance_metadata(instance_id)

	instance_id: An integer instance id

And should return a string.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A dictionary containing the models error overlap between h1 and h2,
the error fraction by class of the model h2,
the trust compatibility score of h2 with respect to h1, and
the error compatibility score of h2 with respect to h1.

	
backwardcompatibilityml.helpers.training.get_all_error_instance_indices(h1, h2, batch_ids, batched_evaluation_data, batched_evaluation_target, get_instance_metadata=None, device='cpu')

	Return the list of indices of instances from batched_evaluation_data on which the
model prediction differs from the ground truth in batched_evaluation_target.

	Parameters

	
	h1 – The baseline model.

	h2 – The new updated model.

	batch_ids – A list of the instance ids in the batch.

	batched_evaluation_data – A single batch of input data to be passed to our model.

	batched_evaluation_target – A single batch of the corresponding output targets.

	get_instance_metadata –
	A function that returns a text string representation of some metadata corresponding to the instance id. It should be a function of the form:

	
	get_instance_metadata(instance_id)

	instance_id: An integer instance id

And should return a string.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A list of indices of the instances within the batched data, for which the
model did not match the expected target.

	
backwardcompatibilityml.helpers.training.get_error_instance_ids_by_class(model, batch_ids, batched_evaluation_data, batched_evaluation_target, device='cpu')

	Return the instance ids corresponding to errors of the model by class.

	Parameters

	
	model – The model being evaluated.

	batched_evaluation_data – A single batch of input data to be passed to our model.

	batched_evaluation_target – A single batch of the corresponding output targets.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A dictionary of key / value pairs, where the key is the output class
and the value is the list of instance ids corresponding to misclassification
errors of the model within that class.

	
backwardcompatibilityml.helpers.training.get_error_instance_indices(model, batched_evaluation_data, batched_evaluation_target, device='cpu')

	Return the list of indices of instances from batched_evaluation_data on which the
model prediction differs from the ground truth in batched_evaluation_target.

	Parameters

	
	model – The model being evaluated.

	batched_evaluation_data – A single batch of input data to be passed to our model.

	batched_evaluation_target – A single batch of the corresponding output targets.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A list of indices of the instances within the batched data, for which the
model did not match the expected target.

	
backwardcompatibilityml.helpers.training.get_incompatible_instances_by_class(all_errors, batch_ids, batched_evaluation_target, class_incompatible_instance_ids)

	Finds instances where h2 is incompatible with h1 and inserts
{class : incompatible_data_id} mappings into the class_incompatible_instance_ids dictionary.

	Parameters

	
	all_errors – A list of tuples of error indices, h1 and h2 predictions, and ground truth for each instance

	batch_ids – The instance ids of the data rows in the batched data.

	batched_evaluation_target – A single batch of the corresponding output targets.

	class_incompatible_instance_ids – The dictionary to fill with incompatible instances and their ids

	
backwardcompatibilityml.helpers.training.get_model_error_overlap(h1, h2, batch_ids, batched_evaluation_data, batched_evaluation_target, device='cpu')

	Return the instance ids corresponding to errors of each model
as well as the instance ids corresponding to errors common to both models.

	Parameters

	
	h1 – Reference Pytorch model.

	h2 – The model being compared to h1.

	batch_ids – The instance ids of the data rows in the batched data.

	batched_evaluation_data – A single batch of input data to be passed to our model.

	batched_evaluation_target – A single batch of the corresponding output targets.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	instance_ids_of_errors_due_to_h1,
instance_ids_of_errors_due_to_h2,
instance_ids_of_errors_due_to_h1_and_h2

	Return type

	A triple of the form

	
backwardcompatibilityml.helpers.training.test(network, loss_function, test_set, batch_size_test, device='cpu')

	Tests a model in a test set using the loss function provided.

(Please note that this is not to be used for testing with a
compatibility loss function.)

	Parameters

	
	network – The model which is undergoing testing.

	loss_function – An instance of the loss function to use for training.

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_test – An integer representing the batch size of the test set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	Returns a list of test loses.

	
backwardcompatibilityml.helpers.training.test_compatibility(h2, loss_function, test_set, batch_size_test, device='cpu')

	Tests a model in a test set using the backward compatibility loss function provided.

	Parameters

	
	h2 – The model which is undergoing training / updating.

	loss_function – An instance of a compatibility loss function.

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_test – An integer representing the batch size of the test set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	Returns a list of test loses.

	
backwardcompatibilityml.helpers.training.train(number_of_epochs, network, optimizer, loss_function, training_set, test_set, batch_size_train, batch_size_test, device='cpu')

	Trains a model with respect to a loss function, using an instance
of an optimizer.

(Please note that this is not to be used for training with a
compatibility loss function.)

	Parameters

	
	network – The model which is undergoing training.

	number_of_epochs – Number of epochs of training.

	optimizer – The optimizer instance to use for training.

	loss_function – An instance of the loss function to use for training.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	
Returns four lists

train_counter - The index of a training samples at which training losses were logged.

test_counter - The index of testing samples at which testing losses were logged.

train_losses - The list of logged training losses.

test_losses - The list of logged testing losses.

	
backwardcompatibilityml.helpers.training.train_compatibility(number_of_epochs, h2, optimizer, loss_function, training_set, test_set, batch_size_train, batch_size_test, device='cpu')

	Trains a new model with respect to an existing model using the
compatibility loss function provided. The compatibility loss function
may be either a New Error or Strict Imitation type loss function.

	Parameters

	
	h2 – The model which is undergoing training / updating.

	number_of_epochs – Number of epochs of training.

	loss_function – An instance of a compatibility loss function.

	optimizer – The optimizer instance to use for training.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	
Returns four lists

train_counter - The index of a training samples at which training losses were logged.

test_counter - The index of testing samples at which testing losses were logged.

train_losses - The list of logged training losses.

test_losses - The list of logged testing losses.

	
backwardcompatibilityml.helpers.training.train_compatibility_epoch(epoch, h2, optimizer, loss_function, training_set, batch_size_train, device='cpu')

	Trains a new model using the instance compatibility loss function provided,
over a single epoch. The compatibility loss function instnace may be either
a New Error or Strict Imitation type loss function.

	Parameters

	
	epoch – The integer index of the training epoch being run.

	h2 – The model which is undergoing training / updating.

	optimizer – The optimizer instance to use for training.

	loss_function – An instance of a compatibility loss function.

	training_set – The list of training samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A list of pairs of the form (training_instance_index, training_loss)
at regular intervals of 10 training samples.

	
backwardcompatibilityml.helpers.training.train_epoch(epoch, network, optimizer, loss_function, training_set, batch_size_train, device='cpu')

	Trains a model over a single training epoch, with respect to a loss function,
using an instance of an optimizer.

(Please note that this is not to be used for training with a
compatibility loss function.)

	Parameters

	
	network – The model which is undergoing training.

	optimizer – The optimizer instance to use for training.

	loss_function – An instance of the loss function to use for training.

	training_set – The list of training samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	Returns

	A list of pairs of the form (training_instance_index, training_loss)
at regular intervals of 10 training samples.

	
backwardcompatibilityml.helpers.training.train_new_error(h1, h2, number_of_epochs, training_set, test_set, batch_size_train, batch_size_test, OptimizerClass, optimizer_kwargs, NewErrorLossClass, lambda_c, new_error_loss_kwargs=None, device='cpu')

	
	Parameters

	
	h1 – Reference Pytorch model.

	h2 – The model which is undergoing training / updating.

	number_of_epochs – Number of epochs of training.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	OptimizerClass – The class to instantiate an optimizer from for training.

	optimizer_kwargs – A dictionary of the keyword arguments to be used to
instantiate the optimizer.

	NewErrorLossClass – The class of the New Error style loss function to
be instantiated and used to perform compatibility constrained
training of our model h2.

	lambda_c – The regularization parameter to be used when calibrating the
degree of compatibility to enforce while training.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

	
backwardcompatibilityml.helpers.training.train_strict_imitation(h1, h2, number_of_epochs, training_set, test_set, batch_size_train, batch_size_test, OptimizerClass, optimizer_kwargs, StrictImitationLossClass, lambda_c, strict_imitation_loss_kwargs=None, device='cpu')

	
	Parameters

	
	h1 – Reference Pytorch model.

	h2 – The model which is undergoing training / updating.

	number_of_epochs – Number of epochs of training.

	training_set – The list of training samples as (batch_ids, input, target).

	test_set – The list of testing samples as (batch_ids, input, target).

	batch_size_train – An integer representing batch size of the training set.

	batch_size_test – An integer representing the batch size of the test set.

	OptimizerClass – The class to instantiate an optimizer from for training.

	optimizer_kwargs – A dictionary of the keyword arguments to be used to
instantiate the optimizer.

	StrictImitationLossClass – The class of the Strict Imitation style loss
function to be instantiated and used to perform compatibility
constrained training of our model h2.

	lambda_c – The regularization parameter to be used when calibrating the
degree of compatibility to enforce while training.

	device – A string with values either “cpu” or “cuda” to indicate the
device that Pytorch is performing training on. By default this
value is “cpu”. But in case your models reside on the GPU, make sure
to set this to “cuda”. This makes sure that the input and target
tensors are transferred to the GPU during training.

backwardcompatibilityml.helpers.utils module

	
backwardcompatibilityml.helpers.utils.add_memory_hooks(idx, mod, mem_log, exp, hr)

	

	
backwardcompatibilityml.helpers.utils.clean_from_gpu(tensors)

	Utility function to clean tensors from the GPU.
This is only intended to be used when investigating
why memory usage is high.
An in production solution should instead rely on
correctly structuring your code so that Python
garbage collection automatically removes the
unreferenced tensors as they move out of function scope.
:param tensors: A list of tensor objects to clean from the GPU.

	Returns

	None

	
backwardcompatibilityml.helpers.utils.generate_mem_hook(handle_ref, mem, idx, hook_type, exp)

	

	
backwardcompatibilityml.helpers.utils.get_class_probabilities(batch_label_tensor)

	

	
backwardcompatibilityml.helpers.utils.get_gpu_mem()

	

	
backwardcompatibilityml.helpers.utils.labels_to_probabilities(batch_class_labels, num_classes=None, batch_size=None)

	

	
backwardcompatibilityml.helpers.utils.log_mem(model, mem_log=None, exp=None)

	Utility funtion for adding memory usage logging to a Pytorch model.

	Example usage:

	
model = MyModel()

hook_handles, mem_log = log_mem(model, exp=”memory-profiling-experiment”)

… then do a training run …

mem_log should now contain the results of the memory profiling experiment.

	Parameters

	
	model – A pytorch model

	mem_log – Optional list object, which may contain data from previous
profiling experiments.

	exp – String identifier for the profiling experiment name.

	Returns

	A pair consisting of mem_log - either the same mem_log list
object that was passed in, or a newly constructed one,
that will contain the results of the logging, and
hook_handles - a list of handles for our logging hooks
that will need to be cleared when we are done logging.

	
backwardcompatibilityml.helpers.utils.remove_memory_hooks(hook_handles)

	Clear the memory profiling hooks put in place by log_mem
:param hook_handles: A list of hook hndles to clear

	Returns

	None

	
backwardcompatibilityml.helpers.utils.show_allocated_tensors()

	Attempts to print out the tensors in memory.
:param None:

	Returns

	None

	
backwardcompatibilityml.helpers.utils.sigmoid_to_labels(batch_sigmoids, discriminant_pivot=0.5)

	

Module contents

backwardcompatibilityml.loss package

Submodules

backwardcompatibilityml.loss.new_error module

	
class backwardcompatibilityml.loss.new_error.BCBinaryCrossEntropyLoss(h1, h2, lambda_c, discriminan_pivot=0.5, **kwargs)

	Bases: torch.nn.modules.module.Module

Backward Compatibility Binary Cross-entropy Loss

This class implements the backward compatibility loss function
with the underlying loss function being the cross-entropy loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
bcloss = BCBinaryCrossEntropyLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = bcloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
bcloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
dissonance(h2_support_output_sigmoid, target_labels)

	

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.new_error.BCCrossEntropyLoss(h1, h2, lambda_c, **kwargs)

	Bases: torch.nn.modules.module.Module

Backward Compatibility Cross-entropy Loss

This class implements the backward compatibility loss function
with the underlying loss function being the cross-entropy loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
bcloss = BCCrossEntropyLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = bcloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
bcloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
dissonance(h2_output_logit, target_labels)

	

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.new_error.BCKLDivergenceLoss(h1, h2, lambda_c, num_classes=None, **kwargs)

	Bases: torch.nn.modules.module.Module

Backward Compatibility Kullback–Leibler Divergence Loss

This class implements the backward compatibility loss function
with the underlying loss function being the Kullback–Leibler
Divergence loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
bcloss = BCKLDivergenceLoss(h1, h2, lambda_c, num_classes=num_classes)

	for x, y in training_data:

	loss = bcloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
bcloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	num_classes – An integer denoting the number of classes that we are
attempting to classify the input into.

	
dissonance(h2_output_log_softmax, target_labels)

	

	
forward(x, y, reduction='batchmean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.new_error.BCNLLLoss(h1, h2, lambda_c, **kwargs)

	Bases: torch.nn.modules.module.Module

Backward Compatibility Negative Log Likelihood Loss

This class implements the backward compatibility loss function
with the underlying loss function being the Negative Log Likelihood
loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
bcloss = BCNLLLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = bcloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
bcloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

backwardcompatibilityml.loss.strict_imitation module

	
class backwardcompatibilityml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss(h1, h2, lambda_c, discriminant_pivot=0.5, **kwargs)

	Bases: torch.nn.modules.module.Module

Strict Imitation Binary Cross-entropy Loss

This class implements the strict imitation loss function
with the underlying loss function being the cross-entropy loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
siloss = StrictImitationBinaryCrossEntropyLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = siloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
siloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
dissonance(h1_output_sigmoid, h2_output_sigmoid)

	

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.strict_imitation.StrictImitationCrossEntropyLoss(h1, h2, lambda_c, **kwargs)

	Bases: torch.nn.modules.module.Module

Strict Imitation Cross-entropy Loss

This class implements the strict imitation loss function
with the underlying loss function being the cross-entropy loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
siloss = StrictImitationCrossEntropyLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = siloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
siloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
dissonance(h1_output_labels, h2_output_logit)

	

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.strict_imitation.StrictImitationKLDivergenceLoss(h1, h2, lambda_c, num_classes=None, **kwargs)

	Bases: torch.nn.modules.module.Module

Strict Imitation Kullback–Leibler Divergence Loss

This class implements the strict imitation loss function
with the underlying loss function being the Kullback–Leibler
Divergence loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
siloss = StrictImitationKLDivergenceLoss(
h1, h2, lambda_c, num_classes=num_classes)

	for x, y in training_data:

	loss = siloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
siloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	num_classes – An integer denoting the number of classes that we are
attempting to classify the input into.

	
dissonance(h1_output_logsoftmax, h2_output_logsoftmax)

	

	
forward(x, y, reduction='batchmean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class backwardcompatibilityml.loss.strict_imitation.StrictImitationNLLLoss(h1, h2, lambda_c, **kwargs)

	Bases: torch.nn.modules.module.Module

Strict Imitation Negative Log Likelihood Loss

This class implements the strict imitation loss function
with the underlying loss function being the Negative Log Likelihood
loss.

	Example usage:

	h1 = MyModel()
… train h1 …
h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter)
h2 = MyNewModel() (this may be the same model type as MyModel)
siloss = StrictImitationNLLLoss(h1, h2, lambda_c)

	for x, y in training_data:

	loss = siloss(x, y)
loss.backward()

Note that we pass in the input and the target directly to the
siloss function instance. It calculates the outputs of h1 and h2
internally.

	Parameters

	
	h1 – Our reference model which we would like to be compatible with.

	h2 – Our new model which will be the updated model.

	lambda_c – A float between 0.0 and 1.0, which is a regularization
parameter that determines how much we want to penalize model h2
for being incompatible with h1. Lower values panalize less and
higher values penalize more.

	
dissonance(h1_output_prob, h2_output_prob)

	

	
forward(x, y, reduction='mean')

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Module contents

backwardcompatibilityml.tensorflow package

Subpackages

	backwardcompatibilityml.tensorflow.loss package
	Submodules

	backwardcompatibilityml.tensorflow.loss.new_error module

	backwardcompatibilityml.tensorflow.loss.strict_imitation module

	Module contents

Submodules

backwardcompatibilityml.tensorflow.helpers module

backwardcompatibilityml.tensorflow.models module

Module contents

backwardcompatibilityml.tensorflow.loss package

Submodules

backwardcompatibilityml.tensorflow.loss.new_error module

backwardcompatibilityml.tensorflow.loss.strict_imitation module

Module contents

backwardcompatibilityml.widgets package

Subpackages

	backwardcompatibilityml.widgets.compatibility_analysis package
	Subpackages
	backwardcompatibilityml.widgets.compatibility_analysis.resources package
	Module contents

	Submodules

	backwardcompatibilityml.widgets.compatibility_analysis.compatibility_analysis module

	Module contents

	backwardcompatibilityml.widgets.model_comparison package
	Subpackages
	backwardcompatibilityml.widgets.model_comparison.resources package
	Module contents

	Submodules

	backwardcompatibilityml.widgets.model_comparison.model_comparison module

	Module contents

Module contents

backwardcompatibilityml.widgets.compatibility_analysis package

Subpackages

	backwardcompatibilityml.widgets.compatibility_analysis.resources package
	Module contents

Submodules

backwardcompatibilityml.widgets.compatibility_analysis.compatibility_analysis module

Module contents

backwardcompatibilityml.widgets.compatibility_analysis.resources package

Module contents

backwardcompatibilityml.widgets.model_comparison package

Subpackages

	backwardcompatibilityml.widgets.model_comparison.resources package
	Module contents

Submodules

backwardcompatibilityml.widgets.model_comparison.model_comparison module

Module contents

backwardcompatibilityml.widgets.model_comparison.resources package

Module contents

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 backwardcompatibilityml	

 	
 	
 backwardcompatibilityml.comparison_management	

 	
 	
 backwardcompatibilityml.helpers	

 	
 	
 backwardcompatibilityml.helpers.comparison	

 	
 	
 backwardcompatibilityml.helpers.http	

 	
 	
 backwardcompatibilityml.helpers.models	

 	
 	
 backwardcompatibilityml.helpers.training	

 	
 	
 backwardcompatibilityml.helpers.utils	

 	
 	
 backwardcompatibilityml.loss	

 	
 	
 backwardcompatibilityml.loss.new_error	

 	
 	
 backwardcompatibilityml.loss.strict_imitation	

 	
 	
 backwardcompatibilityml.metrics	

 	
 	
 backwardcompatibilityml.scores	

 	
 	
 backwardcompatibilityml.sweep_management	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | T

A

 	
 	add_memory_hooks() (in module backwardcompatibilityml.helpers.utils)

B

 	
 	backwardcompatibilityml (module)

 	backwardcompatibilityml.comparison_management (module)

 	backwardcompatibilityml.helpers (module)

 	backwardcompatibilityml.helpers.comparison (module)

 	backwardcompatibilityml.helpers.http (module)

 	backwardcompatibilityml.helpers.models (module)

 	backwardcompatibilityml.helpers.training (module)

 	backwardcompatibilityml.helpers.utils (module)

 	backwardcompatibilityml.loss (module)

 	
 	backwardcompatibilityml.loss.new_error (module)

 	backwardcompatibilityml.loss.strict_imitation (module)

 	backwardcompatibilityml.metrics (module)

 	backwardcompatibilityml.scores (module)

 	backwardcompatibilityml.sweep_management (module)

 	BCBinaryCrossEntropyLoss (class in backwardcompatibilityml.loss.new_error)

 	BCCrossEntropyLoss (class in backwardcompatibilityml.loss.new_error)

 	BCKLDivergenceLoss (class in backwardcompatibilityml.loss.new_error)

 	BCNLLLoss (class in backwardcompatibilityml.loss.new_error)

C

 	
 	clean_from_gpu() (in module backwardcompatibilityml.helpers.utils)

 	compare_models() (in module backwardcompatibilityml.helpers.comparison)

 	
 	ComparisonManager (class in backwardcompatibilityml.comparison_management)

 	compatibility_scores() (in module backwardcompatibilityml.helpers.training)

 	compatibility_sweep() (in module backwardcompatibilityml.helpers.training)

D

 	
 	dissonance() (backwardcompatibilityml.loss.new_error.BCBinaryCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.new_error.BCCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.new_error.BCKLDivergenceLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationKLDivergenceLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationNLLLoss method)

E

 	
 	error_compatibility_score() (in module backwardcompatibilityml.scores)

 	
 	evaluate_model_performance_and_compatibility() (in module backwardcompatibilityml.helpers.training)

 	evaluate_model_performance_and_compatibility_on_dataset() (in module backwardcompatibilityml.helpers.training)

F

 	
 	forward() (backwardcompatibilityml.helpers.models.LogisticRegression method)

 	(backwardcompatibilityml.helpers.models.MLPClassifier method)

 	(backwardcompatibilityml.loss.new_error.BCBinaryCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.new_error.BCCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.new_error.BCKLDivergenceLoss method)

 	(backwardcompatibilityml.loss.new_error.BCNLLLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationCrossEntropyLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationKLDivergenceLoss method)

 	(backwardcompatibilityml.loss.strict_imitation.StrictImitationNLLLoss method)

G

 	
 	generate_mem_hook() (in module backwardcompatibilityml.helpers.utils)

 	get_all_error_instance_indices() (in module backwardcompatibilityml.helpers.training)

 	get_class_probabilities() (in module backwardcompatibilityml.helpers.utils)

 	get_error_instance_ids_by_class() (in module backwardcompatibilityml.helpers.training)

 	get_error_instance_indices() (in module backwardcompatibilityml.helpers.training)

 	get_evaluation() (backwardcompatibilityml.sweep_management.SweepManager method)

 	
 	get_gpu_mem() (in module backwardcompatibilityml.helpers.utils)

 	get_incompatible_instances_by_class() (in module backwardcompatibilityml.helpers.training)

 	get_instance_image() (backwardcompatibilityml.comparison_management.ComparisonManager method)

 	(backwardcompatibilityml.sweep_management.SweepManager method)

 	get_model_error_overlap() (in module backwardcompatibilityml.helpers.training)

 	get_sweep_status() (backwardcompatibilityml.sweep_management.SweepManager method)

 	get_sweep_summary() (backwardcompatibilityml.sweep_management.SweepManager method)

I

 	
 	is_running() (backwardcompatibilityml.sweep_management.SweepManager method)

L

 	
 	labels_to_probabilities() (in module backwardcompatibilityml.helpers.utils)

 	
 	log_mem() (in module backwardcompatibilityml.helpers.utils)

 	LogisticRegression (class in backwardcompatibilityml.helpers.models)

M

 	
 	MLPClassifier (class in backwardcompatibilityml.helpers.models)

 	
 	model_accuracy() (in module backwardcompatibilityml.metrics)

N

 	
 	no_cache() (in module backwardcompatibilityml.helpers.http)

R

 	
 	remove_memory_hooks() (in module backwardcompatibilityml.helpers.utils)

S

 	
 	show_allocated_tensors() (in module backwardcompatibilityml.helpers.utils)

 	sigmoid_to_labels() (in module backwardcompatibilityml.helpers.utils)

 	start_sweep() (backwardcompatibilityml.sweep_management.SweepManager method)

 	start_sweep_synchronous() (backwardcompatibilityml.sweep_management.SweepManager method)

 	
 	StrictImitationBinaryCrossEntropyLoss (class in backwardcompatibilityml.loss.strict_imitation)

 	StrictImitationCrossEntropyLoss (class in backwardcompatibilityml.loss.strict_imitation)

 	StrictImitationKLDivergenceLoss (class in backwardcompatibilityml.loss.strict_imitation)

 	StrictImitationNLLLoss (class in backwardcompatibilityml.loss.strict_imitation)

 	SweepManager (class in backwardcompatibilityml.sweep_management)

T

 	
 	test() (in module backwardcompatibilityml.helpers.training)

 	test_compatibility() (in module backwardcompatibilityml.helpers.training)

 	train() (in module backwardcompatibilityml.helpers.training)

 	train_compatibility() (in module backwardcompatibilityml.helpers.training)

 	
 	train_compatibility_epoch() (in module backwardcompatibilityml.helpers.training)

 	train_epoch() (in module backwardcompatibilityml.helpers.training)

 	train_new_error() (in module backwardcompatibilityml.helpers.training)

 	train_strict_imitation() (in module backwardcompatibilityml.helpers.training)

 	trust_compatibility_score() (in module backwardcompatibilityml.scores)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/model_comparison_widget.png
Intersection Between Model Errors @ Distribution of Incompatible Points @

100 —
Progress @ Common @ Regress @ _‘:é %
S 4
3 804
8 704
£
8 604
£
5 50
S
g 404
§
S 30
()
o
20+
10
Y T T T T
0 1 2 3
Classes
<|1of2|>
Instance h1 Prediction h2 Prediction Ground Truth
0 5 6 5
1 0 6 0
2 4 6 4
3 1 6 1
4 9 6 9

<|10f8669| >

_images/updates_can_break_team_performance.png
Updates can
break team
performance

[Bansal et al, AAAI 2019]

Seems trustable
on elderly patients.

’ V2 should not be trusted
on elderly patients

ﬁa
3
i %

vi 190 Al wrong
Accuracy=80% N accugss

_images/compatibility_analysis_widget.png
New Errer - Tramng

Dissonance \/

W Stct mitston - Trsining

Start Sweep

New Error - Testng.

W st mtston -Testng

o o
oss ° oss °
os os
g g
E e E
3 o 3 o
H H
o o
oas oas
oo o3 ok oo oo o3 ok oo
se® 5@
ercosn ot moc_sccuracy0.544 mosersccuracy 2152%
secoms 2 mooel_sccuracy 0394 050

Inersacton Betwesn Mossl Erors (D)

Progress O

regess @ common ©

100,
FY

FY
.
£
Y
o
FY

Percentage of ncompa

EY

Ot ot ncempate Pons (D)

Claszes

_images/error_instances_table.png
By KEIX

Inersacton Betwesn Mossl Erors (D) Oisisuten of ncampasoie Pors (D)

pogress D 1 Reges @ 1 common @

100
FY

FY
.
£
Y
o
FY

Percentage of mcompatible Poins

EY
0

Instance Ground Truth
2 0 9 0
20 0 7 0
55 0 7 0
58 0 s 0
170 0 s 0

<]10f1411[>

_images/updates_in_practice_compatibility_is_not_inbuilt.png
Updates in
Practice

(pansal et , M1 2019)

Compeatibility is not in-built

Classifier Datasat

Compatib

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the BackwardCompatibilityML project’s documentation!

 		
 Project Overview

 		
 Building trust in human-AI teams

 		
 Identifying unreliability problems in an update

 		
 Maintaining component-to-component trust

 		
 Components

 		
 References

 		
 Help Topics

 		
 Getting Started

 		
 Backward Compatibility ML library requirements

 		
 Installing the Backward Compatibility ML library

 		
 Running the Backward Compatibility ML library examples

 		
 Next steps

 		
 Integrating the Backward Compatibility ML Loss Functions

 		
 Example Usage

 		
 Assumptions on the implementation of h1 and h2

 		
 Using the Backward Compatibility ML Compatibility Analysis Widget

 		
 How to Use the CompatibilityAnalysis API

 		
 Interpreting the Visualizations

 		
 Using the Model Comparison Widget

 		
 How to Use the ModelComparison API

 		
 Integrating the Model Comparison Widget

 		
 Python Packages

 		
 backwardcompatibilityml package

 		
 Subpackages

 		
 Submodules

 		
 backwardcompatibilityml.comparison_management module

 		
 backwardcompatibilityml.metrics module

 		
 backwardcompatibilityml.scores module

 		
 backwardcompatibilityml.sweep_management module

 		
 Module contents

_images/backward_compability_analysis_OCR_pipeline_component_1of2.png
OCR pipeline component

Fremreme—

Backward L
Compatibility -
Analysis

[srivastava et L., KOD 2020]

0GR (abel Nois (ot Conrote By User)

BIC:Backvard Trust Comparit descrbes the percentge o rustpreserved afer
anupdate.

BEC:Backward Error Compatiitycapturesthe probabilty that a misike made by
e newty aned model s not new.

_static/up.png

_images/backward_compability_analysis_OCR_pipeline_component_2of2.png
Backward
Compatibility
Analysis

srivastava et al. KDD 2020]

OCR pipeline component

Incompatible OCR examples (25% noise)

0 | z

Troc b Digto TrocLabeklowerL Troe Libel spper 2
197% ofncompatil points_16% ofncompatibl pints_13% ofncompatbl pints
NiodT | Accuracy 9%~ Niode 1 Accuray- 7%~ Nlode 1 Accracy:19%
Nodel2 Accuray 105 Node 2 Acuray. 175 __ Mol 2 Accwray. 21%

Downstrea failures in receipt fraud detection

ErrorSeor () ErrorSeore ()

_static/up-pressed.png

