
BackwardCompatibilityML
Release 1.1.0

Oct 09, 2020

Contents

1 Project Overview 1

2 Help Topics 7

3 backwardcompatibilityml 13

4 Indices and tables 35

Python Module Index 37

Index 39

i

ii

CHAPTER 1

Project Overview

Updates that may improve an AI system’s accuracy can also introduce new and unanticipated errors that damage user
trust. Updates that introduce new errors can also break trust between software components and machine learning
models, as these errors are propagated and compounded throughout larger integrated AI systems. The Backward
Compatibility ML library is an open-source project for evaluating AI system updates in a new way for increasing
system reliability and human trust in AI predictions for actions.

In this project, we define an update to an AI component to be compatible when it does not disrupt an experienced user’s
insights and expectations—or mental model—of how the classifier works. An update is considered compatible only if
the updated model recommends the same correct action as recommended by the previous version, which received the
same input. A compatible update supports the user’s mental model and maintains trust.

Compatibility is both a usability and engineering concern. This project’s series of loss functions provides important
metrics that extend beyond the single score of accuracy. These support ML practitioners in navigating performance and
tradeoffs in system updates. The functions integrate easily into existing AI model-training workflows. Simple visual-
izations, such as Venn diagrams, further help practitioners compare models and explore performance and compatibility
tradeoffs for informed choices.

1.1 Building trust in human-AI teams

After repeated experience with an AI system, users develop insights and expectations, a mental model, of the system’s
competence. The success of human-AI partnerships is dependent on people knowing whether to trust the AI or override
it. This is critically important as AI systems are used to augment human decision making in high-stakes domains such
as, for example, healthcare, criminal justice, or transportation.

A problem arises when developers regularly update AI systems with improved training data or algorithms: Updates
that may improve an AI’s predictive performance can also introduce new and unexpected errors that breach the end-
users’ trust in the AI.

For example, a doctor uses a classifier to predict whether an elderly patient will be readmitted to the hospital shortly
after being discharged. Based on the AI’s prediction and her own experience, she must decide if the patient should be
placed in an outpatient program to avoid readmission. The doctor has interacted with the model quite a few times and
knows that it is 80% accurate. Having learned the error boundary, she has concluded that the model is trustworthy for

1

BackwardCompatibilityML, Release 1.1.0

elderly patients. However, she is unaware that an update, which has made the model 90% accurate, now introduces
errors for elderly patients and should not be trusted for this population. This puts the doctor—who is relying on an
outdated mental model—at risk of making a wrong decision for her patient and will undermine her trust in the AI’s
future recommendations.

Updates that may improve an AI system’s predictive performance can also introduce new and unexpected errors that
breach end-users’ trust and damage the effectiveness of human-AI teams. Here, a doctor is not yet aware that an
update, which increased a model’s accuracy, now introduces errors for elderly patients and should not be trusted when
making decisions for this population.

1.2 Identifying unreliability problems in an update

It is helpful to understand that compatibility is not inbuilt, and that measuring backward compatibility can identify
unreliability issues during an update. As shown in the table below, experimenting with three different datasets in
high-stakes decision making (predicting recidivism, credit risk, and mortality) by updating with a larger training set
only, there are cases where compatibility is as low as 40%. This means the model is now making a mistake in 60% of
the cases it was getting right before the update.

2 Chapter 1. Project Overview

BackwardCompatibilityML, Release 1.1.0

1.3 Maintaining component-to-component trust

An incompatible update can also break trust with other software components and machine learning models that are
not able to handle new errors. They instead propagate and compound these new errors throughout complex systems.
Measuring backward compatibility can identify unreliability issues during an update and help ML practitioners control
for backward compatibility to avoid downstream degradation.

For example, a financial services team uses an off-the-shelf OCR model to detect receipt fraud in expense reports.
They have developed a heuristic blacklist component of spoofed company names (e.g., “Nlke” vs. “Nike” or “G00gle”
vs. “Google”), which works well with the OCR model. Developers, with the aim of improving model performance
for a wider variety of fonts, update the model with a noisy dataset of character images scraped from the internet,
which people have labelled through CAPTCHA tasks. Common human annotation mistakes of confusing “l” for “i”
or “0” for “o” now unexpectedly reduce the classifier’s ability to discriminate between spoofed and legitimate business
names, which can lead to costly system failures.

As shown in the image below, developers can use two separate measures of backward compatibility for evaluating and
avoiding downstream failures: Backward Trust Compatibility (BTC), which describes the percentage of trust preserved
after an update, and Backward Error Compatibility (BEC), which captures the probability that a mistake made by the
newly trained model is not new. The 89% BTC and 71% BEC scores show a decrease in backward compatibility
compared with the baseline.

1.3. Maintaining component-to-component trust 3

BackwardCompatibilityML, Release 1.1.0

In this example, above, while the overall accuracy of word recognition might improve after the model update, the
performance of the system on specific words in the blacklist heuristics may degrade significantly. Additionally, with
backward compatibility analysis, seeing the distribution of incompatibility can be a useful guide for pinpointing where
there are problems with the data.

Below illustrates how a holistic view of decreases in performance enable users to monitor incompatibility beyond
examples that are explicitly impacted by noise. Here, the uppercase “Z” is often among incompatible points, even
though it is not directly influenced by noise.

4 Chapter 1. Project Overview

BackwardCompatibilityML, Release 1.1.0

1.4 Components

The Backward Compatibility ML library has two components:

• A series of loss functions in which users can vary the weight assigned to the dissonance factor and explore
performance/capability tradeoffs during machine learning optimization.

• Visualization widgets that help users examine metrics and error data in detail. They provide a view of error
intersections between models and incompatibility distribution across classes.

1.5 References

Updates in Human-AI Teams: Understanding and Addressing the Performance/Compatibility Trade-
off.Gagan Bansal, Besmira Nushi, Ece Kamar, Daniel S Weld, Walter S Lasecki, Eric Horvitz; AAAI 2019.pdf

An Empirical Analysis of Backward Compatibility in Machine Learning Systems. Megha Srivastava, Besmira Nushi,
Ece Kamar, Shital Shah, Eric Horvitz; KDD 2020. pdf

Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure.Besmira Nushi, Ece
Kamar, Eric Horvitz; HCOMP 2018.pdf

1.4. Components 5

https://www.microsoft.com/en-us/research/uploads/prod/2019/01/Backward_Compatibility_in_AI.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/06/Backward_Compatibility_ML_KDD.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/07/accountable_AI_hcomp_2018.pdf

BackwardCompatibilityML, Release 1.1.0

6 Chapter 1. Project Overview

CHAPTER 2

Help Topics

2.1 Getting Started

2.1.1 Backward Compatibility ML library requirements

The requirements for installing and running the Backward Compatibility ML library are:

• Windows 10 / Linux OS (tested on Ubuntu 18.04 LTS)

• Python 3.6

2.1.2 Installing the Backward Compatibility ML library

Follow these steps to install the Backward Compatibility ML library on your computer. You may want to install
Anaconda (or other virtual environment) on your system for convenience, then follow these steps:

1. (optional) Prepare a conda virtual environment:

conda create -n bcml python=3.6
conda activate bcml

2. (optional) Ensure you have the latest pip

python -m pip install --upgrade pip

3. Install the Backward Compatibility ML library:

On Linux:

pip install backwardcompatibilityml

On Windows:

7

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

BackwardCompatibilityML, Release 1.1.0

pip install backwardcompatibilityml -f https://download.pytorch.
→˓org/whl/torch_stable.html

4. Import the ‘backwardcompatibilityml‘ package in your code. For example:

import backwardcompatibilityml.loss as bcloss
import backwardcompatibilityml.scores as scores

2.1.3 Running the Backward Compatibility ML library examples

Note: The Backward Compatibility ML library examples were developed as Jupyter Notebooks and require the
Jupyter Software to be installed. The steps below assume that you have git installed on your system.

The Backward Compatibility ML library includes several examples so you can quickly get an idea of its benefits and
learn how to integrate it into your existing ML training workflow.

To download and run the examples, follow these steps:

1. Clone the BackwardCompatibilityML repository:

git clone https://github.com/microsoft/BackwardCompatibilityML.git

2. Install the requirements for the examples:

cd BackwardCompatibilityML

On Linux:

pip install -r example-requirements.txt

On Windows:

pip install -r example-requirements.txt -f https://download.pytorch.org/
→˓whl/torch_stable.html

3. Start your Jupyter Notebooks server and load an example notebook under the ‘examples‘ folder:

cd examples
jupyter notebook

8 Chapter 2. Help Topics

https://jupyter.org/install
https://git-scm.com/downloads

BackwardCompatibilityML, Release 1.1.0

Backward Compatibility ML library examples included

Notebook name Frame-
work

Dataset Network Op-
ti-
mizer

Backward Com-
patibility Disso-
nance Function

Backward
Compatibility
Loss Function

Uses Com-
patibility-
Analysis
widget

bcnllloss Py-
Torch

MNIST Custom SGD New Error NLLLoss N

compatibility-
analysis

Py-
Torch

MNIST Custom SGD New Error &
Strict Imitation

CrossEntropy-
Loss

Y

compatibility-
analysis-adult

Py-
Torch

UCI
Adult
Data
Set

LogisticRe-
gression &
MLPClassi-
fier

SGD New Error &
Strict Imitation

CrossEntropy-
Loss

Y

compatibility-
analysis-cifar10-
resnet18

Py-
Torch

CI-
FAR10

Custom &
RESNet 18

SGD New Error &
Strict Imitation

CrossEntropy-
Loss

Y

compatibility-
analysis-cifar10-
resnet18-
pretrained

Py-
Torch

CI-
FAR10

Custom &
RESNet 18
(pretrained)

SGD New Error &
Strict Imitation

CrossEntropy-
Loss

Y

compatibility-
analysis-from-
saved-data

Py-
Torch

MNIST Custom SGD New Error &
Strict Imitation

CrossEntropy-
Loss

Y

si_cross_entropy_lossPy-
Torch

MNIST Custom SGD Strict Imitation CrossEntropy-
Loss

N

si_nllloss Py-
Torch

MNIST Custom SGD Strict Imitation NLLLoss N

2.1.4 Next steps

Do you want to learn how to integrate the Backward Compatibility ML Loss Function in your new or existing ML
training workflows? Follow this tutorial.

If you want to ask us a question, suggest a feature or report a bug, please contact the team by filing an issue in our
repository on GitHub. We look forward to hearing from you!

2.2 Integrating the Backward Compatibility ML Loss Functions

We have implemented the following compatibility loss functions:

1. BCCrossEntropyLoss

2. BCNLLLoss

And the following strict imitation loss functions:

1. StrictImitationCrossEntropyLoss

2. StrictImitationNLLLoss

Both these sets of loss functions are implemented along the lines of

2.2. Integrating the Backward Compatibility ML Loss Functions 9

https://github.com/microsoft/BackwardCompatibilityML/issues

BackwardCompatibilityML, Release 1.1.0

compatibility_loss(x, y) = underlying_loss(h2(x), y) + lambda_c *
dissonance(h1, h2, x, y)

Where the dissonance is the backward compatibility dissonance for the compatibility loss functions, and the strict
imitation dissonance in the case of the strict imitation loss functions.

2.2.1 Example Usage

Let us assume that we have a pre-trained model h1 that we want to use as our reference model while training / updating
a new model h2.

Let us load our pre-trained model:

h1 = MyModel()
h1.load_state_dict(torch.load("path/to/state/dict.state"))

Then let us instantiate h2 and train / update it, using h1 as a reference:

from backwardcompatibilityml.loss import BCCrossEntropyLoss

h2 = MyModel()
lambda_c = 0.7
bc_loss = BCCrossEntropyLoss(h1, h2, lambda_c)

for data, target in updated_training_set:
h2.zero_grad()
loss = bc_loss(data, target)
loss.backward()

Calling loss.backward() at each step of the training iteration, updates the weights of the model h2.

You may also decide to use an optimizer as follows:

import torch.optim as optim
from backwardcompatibilityml.loss import BCCrossEntropyLoss

h2 = MyModel()
lambda_c = 0.7
learning_rate = 0.01
momentum = 0.5
bc_loss = BCCrossEntropyLoss(h1, h2, lambda_c)
optimizer = optim.SGD(h2.parameters(), lr=learning_rate, momentum=momentum)

for data, target in updated_training_set:
loss = bc_loss(data, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()

The usage for BCNLLLoss, StrictImitationCrossEntropyLoss and StrictImitationNLLLoss is
exactly the same as above.

2.2.2 Assumptions on the implementation of h1 and h2

It is important*to emphasize that since the compatibility and strict imitation loss functions need to use h1 and h2 to
calculate the loss, some assumptions had to be made on the output returned by h1 and h2.

10 Chapter 2. Help Topics

BackwardCompatibilityML, Release 1.1.0

Specifically, we require that both the models h1 and h2 return an ordered triple containing:

1. The raw logits output from the final layer.

2. The function softmax applied to the raw logits.

3. The function log_softmax applied to the raw logits.

Here is an example Logistic Regression model satisfying these requirements:

import torch.nn as nn
import torch.nn.functional as F

class LogisticRegression(nn.Module):

def __init__(self, input_dim, output_dim):
super(LogisticRegression, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)

def forward(self, x):
out = self.linear(x)
out_softmax = F.softmax(out, dim=-1)
out_log_softmax = F.log_softmax(out, dim=-1)

return out, out_softmax, out_log_softmax

Here is an example Convolutional Network model satisfying these requirements:

import torch.nn as nn
import torch.nn.functional as F

class ConvolutionalNetwork(nn.Module):
def __init__(self):

super(ConvolutionalNetwork, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x, F.softmax(x, dim=1), F.log_softmax(x, dim=1)

2.3 Using the Backward Compatibility ML Compatibility Analysis
Widget

Note: This topic will be added in a future release. Will cover how to use the Compatibility Analysis widget and
visualizations to interpret outputs from loss functions

2.3. Using the Backward Compatibility ML Compatibility Analysis Widget 11

BackwardCompatibilityML, Release 1.1.0

12 Chapter 2. Help Topics

CHAPTER 3

backwardcompatibilityml

3.1 backwardcompatibilityml package

3.1.1 Subpackages

backwardcompatibilityml.helpers package

Submodules

backwardcompatibilityml.helpers.training module

backwardcompatibilityml.helpers.training.compatibility_scores(h1, h2, dataset,
device=’cpu’)

Parameters

• h1 – Reference Pytorch model.

• h2 – The model being compared to h1.

• dataset – Data in the form of a list of batches of input/target pairs.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A pair consisting of btc_dataset - the average trust compatibility score over all batches,
and bec_dataset - the average error compatibility score over all batches.

13

BackwardCompatibilityML, Release 1.1.0

backwardcompatibilityml.helpers.training.compatibility_sweep(sweeps_folder_path,
number_of_epochs,
h1, h2, train-
ing_set, test_set,
batch_size_train,
batch_size_test,
OptimizerClass,
optimizer_kwargs,
NewErrorLoss-
Class, Stric-
tImitationLoss-
Class, perfor-
mance_metric=None,
lambda_c_stepsize=0.25,
per-
cent_complete_queue=None,
new_error_loss_kwargs=None,
strict_imitation_loss_kwargs=None,
device=’cpu’)

This function trains a new model using the backward compatibility loss function BCNLLLoss with respect to
an existing model. It does this for each value of lambda_c betweek 0 and 1 at the specified step sizes. It saves
the newly trained models in the specified folder.

Parameters

• sweeps_folder_path – A string value representing the full path of the folder wehre
the result of the compatibility sweep is to be stored.

• number_of_epochs – The number of training epochs to use on each sweep.

• h1 – The reference model being used.

• h2 – The new model being traind / updated.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• OptimizerClass – The class to instantiate an optimizer from for training.

• optimizer_kwargs – A dictionary of the keyword arguments to be used to instantiate
the optimizer.

• NewErrorLossClass – The class of the New Error style loss function to be instantiated
and used to perform compatibility constrained training of our model h2.

• StrictImitationLossClass – The class of the Strict Imitation style loss function to
be instantiated and used to perform compatibility constrained training of our model h2.

• performance_metric – Optional performance metric to be used when evaluating the
model. If not specified then accuracy is used.

• lambda_c_stepsize – The increments of lambda_c to use as we sweep the parameter
space between 0.0 and 1.0.

• percent_complete_queue – Optional thread safe queue to use for logging the status
of the sweep in terms of the percentage complete.

14 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

backwardcompatibilityml.helpers.training.evaluate_model_performance_and_compatibility(h1,
h2,
train-
ing_set,
test_set,
per-
for-
mance_metric=None,
de-
vice=’cpu’)

Calculate the error overlap of h1 and h2 on a batched dataset. Calculate the h2 model error fraction by class on
a batched dataset.

Parameters

• h1 – The reference model being used.

• h2 – The model being traind / updated.

• performance_metric – Optional performance metric to be used when evaluating the
model. If not specified then accuracy is used.

• training_set – The list of batched training samples as (input, target) pairs.

• test_set – The list of batched testing samples as (input, target) pairs.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A dictionary containing the results of the model performance and evaluation performed on
the training and the testing sets separately.

backwardcompatibilityml.helpers.training.evaluate_model_performance_and_compatibility_on_dataset(h1,
h2,
dataset,
per-
for-
mance_metric=None,
de-
vice=’cpu’)

Parameters

• h1 – The reference model being used.

• h2 – The model being traind / updated.

• performance_metric – Optional performance metric to be used when evaluating the
model. If not specified then accuracy is used.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

3.1. backwardcompatibilityml package 15

BackwardCompatibilityML, Release 1.1.0

Returns A dictionary containing the models error overlap between h1 and h2, the error fraction
by class of the model h2, the trust compatibility score of h2 with respect to h1, and the error
compatibility score of h2 with respect to h1.

backwardcompatibilityml.helpers.training.get_error_fraction_by_class(model,
batched_evaluation_data,
batched_evaluation_target,
de-
vice=’cpu’)

Return the fraction of errors of the model by class.

Parameters

• model – The model being evaluated.

• batched_evaluation_data – A single batch of input data to be passed to our model.

• batched_evaluation_target – A single batch of the corresponding output targets.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A dictionary of key / value pairs, where the key is the output class and the value is the
fraction of misclassification errors of the model within that class.

backwardcompatibilityml.helpers.training.get_error_instance_indices(model,
batched_evaluation_data,
batched_evaluation_target,
de-
vice=’cpu’)

Return the list of indices of instances from batched_evaluation_data on which the model prediction differs from
the ground truth in batched_evaluation_target.

Parameters

• model – The model being evaluated.

• batched_evaluation_data – A single batch of input data to be passed to our model.

• batched_evaluation_target – A single batch of the corresponding output targets.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A list of indices of the instances within the batched data, for which the model did not match
the expected target.

backwardcompatibilityml.helpers.training.get_normalized_model_error_overlap(h1,
h2,
batched_evaluation_data,
batched_evaluation_target,
de-
vice=’cpu’)

Return the fraction of errors of each model and the fraction of errors common to both models, all with respect
to the total number of errors of each model.

Parameters

• h1 – Reference Pytorch model.

16 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• h2 – The model being compared to h1.

• batched_evaluation_data – A single batch of input data to be passed to our model.

• batched_evaluation_target – A single batch of the corresponding output targets.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns

If there are any errors at all it returns a triple of the form proportion_of_error_due_to_h1,
proportion_of_error_due_to_h2, proportion_of_error_due_to_h1_and_h2
If there are no errors at all it returns the triple 0, 0, 0

backwardcompatibilityml.helpers.training.model_accuracy(model, dataset, de-
vice=’cpu’)

backwardcompatibilityml.helpers.training.test(network, loss_function, test_set,
batch_size_test, device=’cpu’)

Tests a model in a test set using the loss function provided.

(Please note that this is not to be used for testing with a compatibility loss function.)

Parameters

• network – The model which is undergoing testing.

• loss_function – An instance of the loss function to use for training.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_test – An integer representing the batch size of the test set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns Returns a list of test loses.

backwardcompatibilityml.helpers.training.test_compatibility(h2, loss_function,
test_set,
batch_size_test,
device=’cpu’)

Tests a model in a test set using the backward compatibility loss function provided.

Parameters

• h2 – The model which is undergoing training / updating.

• loss_function – An instance of a compatibility loss function.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_test – An integer representing the batch size of the test set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on

3.1. backwardcompatibilityml package 17

BackwardCompatibilityML, Release 1.1.0

the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns Returns a list of test loses.

backwardcompatibilityml.helpers.training.train(number_of_epochs, network, optimizer,
loss_function, training_set, test_set,
batch_size_train, batch_size_test,
device=’cpu’)

Trains a model with respect to a loss function, using an instance of an optimizer.

(Please note that this is not to be used for training with a compatibility loss function.)

Parameters

• network – The model which is undergoing training.

• number_of_epochs – Number of epochs of training.

• optimizer – The optimizer instance to use for training.

• loss_function – An instance of the loss function to use for training.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns

Returns four lists
train_counter - The index of a training samples at which training losses were logged.
test_counter - The index of testing samples at which testing losses were logged.
train_losses - The list of logged training losses.
test_losses - The list of logged testing losses.

backwardcompatibilityml.helpers.training.train_compatibility(number_of_epochs,
h2, optimizer,
loss_function,
training_set,
test_set,
batch_size_train,
batch_size_test,
device=’cpu’)

Trains a new model with respect to an existing model using the compatibility loss function provided. The
compatibility loss function may be either a New Error or Strict Imitation type loss function.

Parameters

• h2 – The model which is undergoing training / updating.

• number_of_epochs – Number of epochs of training.

18 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• loss_function – An instance of a compatibility loss function.

• optimizer – The optimizer instance to use for training.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns

Returns four lists
train_counter - The index of a training samples at which training losses were logged.
test_counter - The index of testing samples at which testing losses were logged.
train_losses - The list of logged training losses.
test_losses - The list of logged testing losses.

backwardcompatibilityml.helpers.training.train_compatibility_epoch(epoch, h2,
optimizer,
loss_function,
train-
ing_set,
batch_size_train,
de-
vice=’cpu’)

Trains a new model using the instance compatibility loss function provided, over a single epoch. The compati-
bility loss function instnace may be either a New Error or Strict Imitation type loss function.

Parameters

• epoch – The integer index of the training epoch being run.

• h2 – The model which is undergoing training / updating.

• optimizer – The optimizer instance to use for training.

• loss_function – An instance of a compatibility loss function.

• training_set – The list of training samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A list of pairs of the form (training_instance_index, training_loss) at regular intervals of 10
training samples.

3.1. backwardcompatibilityml package 19

BackwardCompatibilityML, Release 1.1.0

backwardcompatibilityml.helpers.training.train_epoch(epoch, network, opti-
mizer, loss_function, train-
ing_set, batch_size_train,
device=’cpu’)

Trains a model over a single training epoch, with respect to a loss function, using an instance of an optimizer.

(Please note that this is not to be used for training with a compatibility loss function.)

Parameters

• network – The model which is undergoing training.

• optimizer – The optimizer instance to use for training.

• loss_function – An instance of the loss function to use for training.

• training_set – The list of training samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

Returns A list of pairs of the form (training_instance_index, training_loss) at regular intervals of 10
training samples.

backwardcompatibilityml.helpers.training.train_new_error(h1, h2, num-
ber_of_epochs, train-
ing_set, test_set,
batch_size_train,
batch_size_test, Op-
timizerClass, opti-
mizer_kwargs, NewEr-
rorLossClass, lambda_c,
new_error_loss_kwargs=None,
device=’cpu’)

Parameters

• h1 – Reference Pytorch model.

• h2 – The model which is undergoing training / updating.

• number_of_epochs – Number of epochs of training.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• OptimizerClass – The class to instantiate an optimizer from for training.

• optimizer_kwargs – A dictionary of the keyword arguments to be used to instantiate
the optimizer.

• NewErrorLossClass – The class of the New Error style loss function to be instantiated
and used to perform compatibility constrained training of our model h2.

• lambda_c – The regularization parameter to be used when calibrating the degree of com-
patibility to enforce while training.

20 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

backwardcompatibilityml.helpers.training.train_strict_imitation(h1, h2, num-
ber_of_epochs,
training_set,
test_set,
batch_size_train,
batch_size_test,
Optimizer-
Class, opti-
mizer_kwargs,
StrictImita-
tionLossClass,
lambda_c,
strict_imitation_loss_kwargs=None,
device=’cpu’)

Parameters

• h1 – Reference Pytorch model.

• h2 – The model which is undergoing training / updating.

• number_of_epochs – Number of epochs of training.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• OptimizerClass – The class to instantiate an optimizer from for training.

• optimizer_kwargs – A dictionary of the keyword arguments to be used to instantiate
the optimizer.

• StrictImitationLossClass – The class of the Strict Imitation style loss function to
be instantiated and used to perform compatibility constrained training of our model h2.

• lambda_c – The regularization parameter to be used when calibrating the degree of com-
patibility to enforce while training.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

backwardcompatibilityml.helpers.utils module

backwardcompatibilityml.helpers.utils.add_memory_hooks(idx, mod, mem_log, exp, hr)

backwardcompatibilityml.helpers.utils.clean_from_gpu(tensors)
Utility function to clean tensors from the GPU. This is only intended to be used when investigating why memory
usage is high. An in production solution should instead rely on correctly structuring your code so that Python
garbage collection automatically removes the unreferenced tensors as they move out of function scope. :param
tensors: A list of tensor objects to clean from the GPU.

3.1. backwardcompatibilityml package 21

BackwardCompatibilityML, Release 1.1.0

Returns None

backwardcompatibilityml.helpers.utils.generate_mem_hook(handle_ref, mem, idx,
hook_type, exp)

backwardcompatibilityml.helpers.utils.get_class_probabilities(batch_label_tensor)

backwardcompatibilityml.helpers.utils.get_gpu_mem()

backwardcompatibilityml.helpers.utils.labels_to_probabilities(batch_class_labels,
num_classes=None,
batch_size=None)

backwardcompatibilityml.helpers.utils.log_mem(model, mem_log=None, exp=None)
Utility funtion for adding memory usage logging to a Pytorch model.

Example usage:

model = MyModel()
hook_handles, mem_log = log_mem(model, exp=”memory-profiling-experiment”)
. . . then do a training run . . .
mem_log should now contain the results of the memory profiling experiment.

Parameters

• model – A pytorch model

• mem_log – Optional list object, which may contain data from previous profiling experi-
ments.

• exp – String identifier for the profiling experiment name.

Returns A pair consisting of mem_log - either the same mem_log list object that was passed in, or
a newly constructed one, that will contain the results of the logging, and hook_handles - a list
of handles for our logging hooks that will need to be cleared when we are done logging.

backwardcompatibilityml.helpers.utils.remove_memory_hooks(hook_handles)
Clear the memory profiling hooks put in place by log_mem :param hook_handles: A list of hook hndles to clear

Returns None

backwardcompatibilityml.helpers.utils.show_allocated_tensors()
Attempts to print out the tensors in memory. :param None:

Returns None

backwardcompatibilityml.helpers.utils.sigmoid_to_labels(batch_sigmoids, discrimi-
nant_pivot=0.5)

Module contents

backwardcompatibilityml.loss package

Submodules

22 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

backwardcompatibilityml.loss.new_error module

class backwardcompatibilityml.loss.new_error.BCBinaryCrossEntropyLoss(h1,
h2,
lambda_c,
dis-
crimi-
nan_pivot=0.5,
**kwargs)

Bases: torch.nn.modules.module.Module

Backward Compatibility Cross Entropy Loss

This class implements the backward compatibility loss function with the underlying loss function being the
Cross Entropy loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) bcloss = BCBinaryCrossEntropyLoss(h1, h2, lambda_c)

for x, y in training_data: loss = bcloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the bcloss function instance. It calculates the
outputs of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

dissonance(h2_support_output_sigmoid, target_labels)

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.new_error.BCCrossEntropyLoss(h1, h2,
lambda_c,
**kwargs)

Bases: torch.nn.modules.module.Module

Backward Compatibility Cross Entropy Loss

This class implements the backward compatibility loss function with the underlying loss function being the
Cross Entropy loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

3.1. backwardcompatibilityml package 23

BackwardCompatibilityML, Release 1.1.0

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) bcloss = BCCrossEntropyLoss(h1, h2, lambda_c)

for x, y in training_data: loss = bcloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the bcloss function instance. It calculates the
outputs of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

dissonance(h2_output_logit, target_labels)

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.new_error.BCKLDivergenceLoss(h1, h2,
lambda_c,
num_classes=None,
**kwargs)

Bases: torch.nn.modules.module.Module

Backward Compatibility Kullback–Leibler Divergence Loss

This class implements the backward compatibility loss function with the underlying loss function being the
Kullback–Leibler Divergence loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) bcloss = BCKLDivergenceLoss(

h1, h2, lambda_c, num_classes=num_classes)

for x, y in training_data: loss = bcloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the bcloss function instance. It calculates the
outputs of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

24 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• num_classes – An integer denoting the number of classes that we are attempting to
classify the input into.

dissonance(h2_output_log_softmax, target_labels)

forward(x, y, reduction=’batchmean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.new_error.BCNLLLoss(h1, h2, lambda_c,
**kwargs)

Bases: torch.nn.modules.module.Module

Backward Compatibility Negative Log Likelihood Loss

This class implements the backward compatibility loss function with the underlying loss function being the
Negative Log Likelihood loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) bcloss = BCNLLLoss(h1, h2, lambda_c)

for x, y in training_data: loss = bcloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the bcloss function instance. It calculates the
outputs of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

3.1. backwardcompatibilityml package 25

BackwardCompatibilityML, Release 1.1.0

backwardcompatibilityml.loss.strict_imitation module

class backwardcompatibilityml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss(h1,
h2,
lambda_c,
dis-
crim-
i-
nant_pivot=0.5,
**kwargs)

Bases: torch.nn.modules.module.Module

Strict Imitation Cross Entropy Loss

This class implements the strict imitation loss function with the underlying loss function being the Cross Entropy
loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) siloss = StrictImitationBinaryCrossEntropyLoss(h1, h2, lambda_c)

for x, y in training_data: loss = siloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the siloss function instance. It calculates the outputs
of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

dissonance(h1_output_sigmoid, h2_output_sigmoid)

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.strict_imitation.StrictImitationCrossEntropyLoss(h1,
h2,
lambda_c,
**kwargs)

Bases: torch.nn.modules.module.Module

Strict Imitation Cross Entropy Loss

This class implements the strict imitation loss function with the underlying loss function being the Cross Entropy
loss.

26 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) siloss = StrictImitationCrossEntropyLoss(h1, h2, lambda_c)

for x, y in training_data: loss = siloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the siloss function instance. It calculates the outputs
of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

dissonance(h1_output_labels, h2_output_logit)

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.strict_imitation.StrictImitationKLDivergenceLoss(h1,
h2,
lambda_c,
num_classes=None,
**kwargs)

Bases: torch.nn.modules.module.Module

Strict Imitation Kullback–Leibler Divergence Loss

This class implements the strict imitation loss function with the underlying loss function being the Kull-
back–Leibler Divergence loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) siloss = StrictImitationKLDivergenceLoss(h1, h2, lambda_c, num_classes=num_classes)

for x, y in training_data: loss = siloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the siloss function instance. It calculates the outputs
of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

3.1. backwardcompatibilityml package 27

BackwardCompatibilityML, Release 1.1.0

• num_classes – An integer denoting the number of classes that we are attempting to
classify the input into.

dissonance(h1_output_logsoftmax, h2_output_logsoftmax)

forward(x, y, reduction=’batchmean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class backwardcompatibilityml.loss.strict_imitation.StrictImitationNLLLoss(h1,
h2,
lambda_c,
**kwargs)

Bases: torch.nn.modules.module.Module

Strict Imitation Negative Log Likelihood Loss

This class implements the strict imitation loss function with the underlying loss function being the Negative Log
Likelihood loss.

Example usage: h1 = MyModel() . . . train h1 . . . h1.eval() (it is important that h1 be put in evaluation mode)

lambda_c = 0.5 (regularization parameter) h2 = MyNewModel() (this may be the same model type as
MyModel) siloss = StrictImitationNLLLoss(h1, h2, lambda_c)

for x, y in training_data: loss = siloss(x, y) loss.backward()

Note that we pass in the input and the target directly to the siloss function instance. It calculates the outputs
of h1 and h2 internally.

Parameters

• h1 – Our reference model which we would like to be compatible with.

• h2 – Our new model which will be the updated model.

• lambda_c – A float between 0.0 and 1.0, which is a regularization parameter that deter-
mines how much we want to penalize model h2 for being incompatible with h1. Lower
values panalize less and higher values penalize more.

dissonance(h1_output_prob, h2_output_prob)

forward(x, y, reduction=’mean’)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

28 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

Module contents

backwardcompatibilityml.widget package

Subpackages

backwardcompatibilityml.widget.resources package

Module contents

Submodules

backwardcompatibilityml.widget.compatibility_analysis module

class backwardcompatibilityml.widget.compatibility_analysis.CompatibilityAnalysis(folder_name,
num-
ber_of_epochs,
h1,
h2,
train-
ing_set,
test_set,
batch_size_train,
batch_size_test,
lambda_c_stepsize=0.25,
Op-
ti-
miz-
er-
Class=None,
op-
ti-
mizer_kwargs=None,
New-
Er-
ror-
Loss-
Class=None,
Stric-
tIm-
i-
ta-
tion-
Loss-
Class=None,
port=None,
new_error_loss_kwargs=None,
strict_imitation_loss_kwargs=None,
de-
vice=’cpu’)

Bases: object

3.1. backwardcompatibilityml package 29

BackwardCompatibilityML, Release 1.1.0

The CompatibilityAnalysis class is an interactive widget intended for use within a Jupyter Notebook. It provides
an interactive UI for the user to interact with for:

1. Initiating a sweep of the lambda_c parameter space while performing compatibility training / updating of
a model h2 with respect to a reference model h1.

2. Checking on the status of the sweep being performed.

3. Interacting with the data generated during the sweep, once the sweep is completed.

Note that this class may only be instantiated once within the same Notebook at this time.

This class works by instantiating a Flask server listening on a free port in the 5000 - 5099 range, or a port
explicitly specified by the user.

It then registers a few REST api endpoints on this Flask server. The UI for the widget which is displayed within
the Jupyter Notebook, interacts with these REST api endpoints over HTTP requests. It dynamically loads data
and uses it to render visualizations within the widget UI.

Parameters

• folder_name – A string value representing the full path of the folder wehre the result of
the compatibility sweep is to be stored.

• number_of_epochs – The number of training epochs to use on each sweep.

• h1 – The reference model being used.

• h2 – The new model being traind / updated.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• lambda_c_stepsize – The increments of lambda_c to use as we sweep the parameter
space between 0.0 and 1.0.

• OptimizerClass – The class to instantiate an optimizer from for training.

• optimizer_kwargs – A dictionary of the keyword arguments to be used to instantiate
the optimizer.

• NewErrorLossClass – The class of the New Error style loss function to be instantiated
and used to perform compatibility constrained training of our model h2.

• StrictImitationLossClass – The class of the Strict Imitation style loss function to
be instantiated and used to perform compatibility constrained training of our model h2.

• port – An integer value to indicate the port to which the Flask service should bind.

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

backwardcompatibilityml.widget.compatibility_analysis.build_environment_params(flask_service_env)
A small helper function to return a dictionary of the environment type and the base url of the Flask service for
the environment type.

Parameters flask_service_env – An instance of an environment from
rai_core_flask.environments.

30 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

Returns A dictionary of the environment type specified as a string, and the base url to be used when
accessing the Flask service for this environment type.

Module contents

3.1.2 Submodules

3.1.3 backwardcompatibilityml.scores module

backwardcompatibilityml.scores.error_compatibility_score(h1_output_labels,
h2_output_labels, ex-
pected_labels)

The fraction of instances labeled incorrectly by h1 and h2 out of the total number of instances labeled incorrectly
by h1.

Parameters

• h1_output_labels – A list of the labels outputted by the model h1.

• h2_output_labels – A list of the labels output by the model h2.

• expected_labels – A list of the corresponding ground truth target labels.

Returns If h1 has any errors, then we return the error compatibility score of h2 with respect to h1.
If h1 has no errors then we return 0.

backwardcompatibilityml.scores.trust_compatibility_score(h1_output_labels,
h2_output_labels, ex-
pected_labels)

The fraction of instances labeled correctly by both h1 and h2 out of the total number of instances labeled
correctly by h1.

Parameters

• h1_output_labels – A list of the labels outputted by the model h1.

• h2_output_labels – A list of the labels output by the model h2.

• expected_labels – A list of the corresponding ground truth target labels.

Returns If h1 has any errors, then we return the trust compatibility score of h2 with respect to h1. If
h1 has no errors then we return 0.

3.1. backwardcompatibilityml package 31

BackwardCompatibilityML, Release 1.1.0

3.1.4 backwardcompatibilityml.sweep_management module

class backwardcompatibilityml.sweep_management.SweepManager(folder_name, num-
ber_of_epochs,
h1, h2, train-
ing_set, test_set,
batch_size_train,
batch_size_test,
OptimizerClass,
optimizer_kwargs,
NewErrorLoss-
Class, StrictImi-
tationLossClass,
lambda_c_stepsize=0.25,
new_error_loss_kwargs=None,
strict_imitation_loss_kwargs=None,
device=’cpu’)

Bases: object

The SweepManager class is used to manage an experiment that performs training / updating a model h2, with
respect to a reference model h1 in a way that preserves compatibility between the models. The experiment
performs a sweep of the parameter space of the regularization parameter lambda_c, by performing compatibility
trainings for small increments in the value of lambda_c for some settable step size.

The sweep manager can run the sweep experiment either synchronously, or within a separate thread. In the latter
case, it provides some helper functions that allow you to check on the percentage of the sweep that is complete.

Parameters

• folder_name – A string value representing the full path of the folder wehre the result of
the compatibility sweep is to be stored.

• number_of_epochs – The number of training epochs to use on each sweep.

• h1 – The reference model being used.

• h2 – The new model being traind / updated.

• training_set – The list of training samples as (input, target) pairs.

• test_set – The list of testing samples as (input, target) pairs.

• batch_size_train – An integer representing batch size of the training set.

• batch_size_test – An integer representing the batch size of the test set.

• OptimizerClass – The class to instantiate an optimizer from for training.

• optimizer_kwargs – A dictionary of the keyword arguments to be used to instantiate
the optimizer.

• NewErrorLossClass – The class of the New Error style loss function to be instantiated
and used to perform compatibility constrained training of our model h2.

• StrictImitationLossClass – The class of the Strict Imitation style loss function to
be instantiated and used to perform compatibility constrained training of our model h2.

• performance_metric – Optional performance metric to be used when evaluating the
model. If not specified then accuracy is used.

• lambda_c_stepsize – The increments of lambda_c to use as we sweep the parameter
space between 0.0 and 1.0.

32 Chapter 3. backwardcompatibilityml

BackwardCompatibilityML, Release 1.1.0

• device – A string with values either “cpu” or “cuda” to indicate the device that Pytorch is
performing training on. By default this value is “cpu”. But in case your models reside on
the GPU, make sure to set this to “cuda”. This makes sure that the input and target tensors
are transferred to the GPU during training.

get_evaluation(evaluation_id)

get_sweep_status()

get_sweep_summary()

start_sweep()

start_sweep_synchronous()

3.1.5 Module contents

3.1. backwardcompatibilityml package 33

BackwardCompatibilityML, Release 1.1.0

34 Chapter 3. backwardcompatibilityml

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

35

BackwardCompatibilityML, Release 1.1.0

36 Chapter 4. Indices and tables

Python Module Index

b
backwardcompatibilityml, 33
backwardcompatibilityml.helpers, 22
backwardcompatibilityml.helpers.training,

13
backwardcompatibilityml.helpers.utils,

21
backwardcompatibilityml.loss, 29
backwardcompatibilityml.loss.new_error,

23
backwardcompatibilityml.loss.strict_imitation,

26
backwardcompatibilityml.scores, 31
backwardcompatibilityml.sweep_management,

32
backwardcompatibilityml.widget, 31
backwardcompatibilityml.widget.compatibility_analysis,

29
backwardcompatibilityml.widget.resources,

29

37

BackwardCompatibilityML, Release 1.1.0

38 Python Module Index

Index

A
add_memory_hooks() (in module backwardcompati-

bilityml.helpers.utils), 21

B
backwardcompatibilityml (module), 33
backwardcompatibilityml.helpers (module),

22
backwardcompatibilityml.helpers.training

(module), 13
backwardcompatibilityml.helpers.utils

(module), 21
backwardcompatibilityml.loss (module), 29
backwardcompatibilityml.loss.new_error

(module), 23
backwardcompatibilityml.loss.strict_imitation

(module), 26
backwardcompatibilityml.scores (module),

31
backwardcompatibilityml.sweep_management

(module), 32
backwardcompatibilityml.widget (module),

31
backwardcompatibilityml.widget.compatibility_analysis

(module), 29
backwardcompatibilityml.widget.resources

(module), 29
BCBinaryCrossEntropyLoss (class in backward-

compatibilityml.loss.new_error), 23
BCCrossEntropyLoss (class in backwardcompatibil-

ityml.loss.new_error), 23
BCKLDivergenceLoss (class in backwardcompatibil-

ityml.loss.new_error), 24
BCNLLLoss (class in backwardcompatibili-

tyml.loss.new_error), 25
build_environment_params() (in

module backwardcompatibili-
tyml.widget.compatibility_analysis), 30

C
clean_from_gpu() (in module backwardcompatibil-

ityml.helpers.utils), 21
compatibility_scores() (in module backward-

compatibilityml.helpers.training), 13
compatibility_sweep() (in module backward-

compatibilityml.helpers.training), 13
CompatibilityAnalysis (class in backwardcom-

patibilityml.widget.compatibility_analysis), 29

D
dissonance() (backwardcompatibili-

tyml.loss.new_error.BCBinaryCrossEntropyLoss
method), 23

dissonance() (backwardcompatibili-
tyml.loss.new_error.BCCrossEntropyLoss
method), 24

dissonance() (backwardcompatibili-
tyml.loss.new_error.BCKLDivergenceLoss
method), 25

dissonance() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss
method), 26

dissonance() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationCrossEntropyLoss
method), 27

dissonance() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationKLDivergenceLoss
method), 28

dissonance() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationNLLLoss
method), 28

E
error_compatibility_score() (in module

backwardcompatibilityml.scores), 31
evaluate_model_performance_and_compatibility()

(in module backwardcompatibili-
tyml.helpers.training), 15

39

BackwardCompatibilityML, Release 1.1.0

evaluate_model_performance_and_compatibility_on_dataset()
(in module backwardcompatibili-
tyml.helpers.training), 15

F
forward() (backwardcompatibili-

tyml.loss.new_error.BCBinaryCrossEntropyLoss
method), 23

forward() (backwardcompatibili-
tyml.loss.new_error.BCCrossEntropyLoss
method), 24

forward() (backwardcompatibili-
tyml.loss.new_error.BCKLDivergenceLoss
method), 25

forward() (backwardcompatibili-
tyml.loss.new_error.BCNLLLoss method),
25

forward() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationBinaryCrossEntropyLoss
method), 26

forward() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationCrossEntropyLoss
method), 27

forward() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationKLDivergenceLoss
method), 28

forward() (backwardcompatibili-
tyml.loss.strict_imitation.StrictImitationNLLLoss
method), 28

G
generate_mem_hook() (in module backwardcom-

patibilityml.helpers.utils), 22
get_class_probabilities() (in module back-

wardcompatibilityml.helpers.utils), 22
get_error_fraction_by_class() (in module

backwardcompatibilityml.helpers.training), 16
get_error_instance_indices() (in module

backwardcompatibilityml.helpers.training), 16
get_evaluation() (backwardcompatibili-

tyml.sweep_management.SweepManager
method), 33

get_gpu_mem() (in module backwardcompatibili-
tyml.helpers.utils), 22

get_normalized_model_error_overlap()
(in module backwardcompatibili-
tyml.helpers.training), 16

get_sweep_status() (backwardcompatibili-
tyml.sweep_management.SweepManager
method), 33

get_sweep_summary() (backwardcompatibil-
ityml.sweep_management.SweepManager
method), 33

L
labels_to_probabilities() (in module back-

wardcompatibilityml.helpers.utils), 22
log_mem() (in module backwardcompatibili-

tyml.helpers.utils), 22

M
model_accuracy() (in module backwardcompatibil-

ityml.helpers.training), 17

R
remove_memory_hooks() (in module backward-

compatibilityml.helpers.utils), 22

S
show_allocated_tensors() (in module back-

wardcompatibilityml.helpers.utils), 22
sigmoid_to_labels() (in module backwardcom-

patibilityml.helpers.utils), 22
start_sweep() (backwardcompatibili-

tyml.sweep_management.SweepManager
method), 33

start_sweep_synchronous() (backwardcompat-
ibilityml.sweep_management.SweepManager
method), 33

StrictImitationBinaryCrossEntropyLoss
(class in backwardcompatibili-
tyml.loss.strict_imitation), 26

StrictImitationCrossEntropyLoss (class in
backwardcompatibilityml.loss.strict_imitation),
26

StrictImitationKLDivergenceLoss (class in
backwardcompatibilityml.loss.strict_imitation),
27

StrictImitationNLLLoss (class in backwardcom-
patibilityml.loss.strict_imitation), 28

SweepManager (class in backwardcompatibili-
tyml.sweep_management), 32

T
test() (in module backwardcompatibili-

tyml.helpers.training), 17
test_compatibility() (in module backwardcom-

patibilityml.helpers.training), 17
train() (in module backwardcompatibili-

tyml.helpers.training), 18
train_compatibility() (in module backward-

compatibilityml.helpers.training), 18
train_compatibility_epoch() (in module

backwardcompatibilityml.helpers.training), 19
train_epoch() (in module backwardcompatibili-

tyml.helpers.training), 19

40 Index

BackwardCompatibilityML, Release 1.1.0

train_new_error() (in module backwardcompati-
bilityml.helpers.training), 20

train_strict_imitation() (in module back-
wardcompatibilityml.helpers.training), 21

trust_compatibility_score() (in module
backwardcompatibilityml.scores), 31

Index 41

	Project Overview
	Help Topics
	backwardcompatibilityml
	Indices and tables
	Python Module Index
	Index

